精英家教网 > 高中数学 > 题目详情
8.二项式(x+$\frac{1}{x}$+2)6的展开式中,含x2项的系数为495.

分析 先求出二项式展开式的通项公式,再令x的系数等于2,求得r的值,即可求得展开式中的含x2项的系数.

解答 解:二项式(x+$\frac{1}{x}$+2)6 =${(\frac{{x}^{2}+2x+1}{x})}^{6}$=$\frac{{(x+1)}^{12}}{{x}^{6}}$ 的展开式中,分子中,含x2的项为${C}_{12}^{4}$•x8
故含x2项的系数为${C}_{12}^{4}$=495,
故答案为:495.

点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,配方是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.下列各式中,值最小的是(  )
A.sin50°cos37°-sin40°cos53°B.2sin6°cos6°
C.2cos240°-1D.$\frac{{\sqrt{3}}}{2}sin{41°}-\frac{1}{2}cos{41°}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)计算:$\frac{{A}_{9}^{5}{+A}_{9}^{4}}{{A}_{10}^{6}{-A}_{10}^{5}}$;
(2)证明:${A}_{n+1}^{m+1}$=${A}_{n}^{m}$+n2${A}_{n-1}^{m-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若x.y满足约束条件$\left\{\begin{array}{l}{x+2y-2≥0}\\{x-y+1≥0}\\{2x-y-2≤0}\end{array}\right.$,则u=log2(3x+y)的取值范围是[0,${log}_{2}^{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某学校采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做视力检查,现将800名学生从1到800进行编号,已知从49~64这16个数中被抽到的数是58,则在第2小组17~32中被抽到的数是(  )
A.23B.24C.26D.28

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.试应用二倍角的正弦、余弦公式化简并讨论函数y=2cos2(x-$\frac{π}{4}$)-1的奇偶性与周期性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.(x2-$\frac{1}{3{x}^{2}}$)6的展开式的常数项等于-$\frac{20}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.试用二重积分性质求下列极限
$\underset{lim}{n→∞}$$\frac{1}{{n}^{3}}$$\underset{∬}{D}$[$\sqrt{{x}^{2}+{y}^{2}}$]dσ.
这里D是圆域x2+y2≤n2,n是正整数,[$\sqrt{{x}^{2}+{y}^{2}}$]是不是大于$\sqrt{{x}^{2}+{y}^{2}}$的最大正整数.
(已知12+22+…+n2=$\frac{n(n+1)(2n+1)}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若双曲线$E:\frac{x^2}{9}-\frac{y^2}{16}=1$的左、右焦点分别为F1、F2,点P在双曲线E上,且|PF1|=5,则|PF2|等于(  )
A.1或11B.1C.11D.13

查看答案和解析>>

同步练习册答案