分析 先利用二重积分求得:$\underset{∬}{D}$[$\sqrt{{x}^{2}+{y}^{2}}$]dσ=$\frac{n(n+1)(2n+1)}{6}$,再求极限.
解答 解:$\underset{∬}{D}$[$\sqrt{{x}^{2}+{y}^{2}}$]dσ=12+22+…+n2=$\frac{n(n+1)(2n+1)}{6}$
$\underset{lim}{n→∞}$$\frac{1}{{n}^{3}}$$\underset{∬}{D}$[$\sqrt{{x}^{2}+{y}^{2}}$]dσ=$\underset{lim}{n→∞}$$\frac{1}{{n}^{3}}$$\frac{n(n+1)(2n+1)}{6}$=$\frac{1}{3}$.
故答案为:=$\frac{1}{3}$.
点评 本题考查二重积分和求极限,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [2,2$\sqrt{3}$] | B. | [2,3] | C. | [2,4] | D. | [1,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com