精英家教网 > 高中数学 > 题目详情
7.计算:log34×log29=4.

分析 根据对数的运算性质以及换底公式即可求出.

解答 解:log34×log29=$\frac{lg4}{lg3}$•$\frac{lg9}{lg2}$=$\frac{2lg2}{lg3}$•$\frac{2lg3}{lg2}$=4,
故答案为:4.

点评 本题考查了对数的运算性质以及换底公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=sinx+cosx,若f1(x)=f′(x),fn+1(x)=f′n(x)(n∈N+),则f2016($\frac{π}{3}$)=(  )
A.-$\frac{\sqrt{3}+1}{2}$B.$\frac{\sqrt{3}+1}{2}$C.$\frac{1-\sqrt{3}}{2}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列各式中,值最小的是(  )
A.sin50°cos37°-sin40°cos53°B.2sin6°cos6°
C.2cos240°-1D.$\frac{{\sqrt{3}}}{2}sin{41°}-\frac{1}{2}cos{41°}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.直线l的方程为x+y+1=0,则直线l的倾斜角为135°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知正项数列{an}的前三项分别为1,3,5,Sn为数列的前n项和,满足:nS2n+1-(n+1)S2n=(n+1)(3n3+An2+Bn)(A,B∈R,n∈N*).
(1)求A,B的值;
(2)求数列{an}的通项公式;
(3)若数列{bn}满足(n+1)an=$\frac{{b}_{1}}{2}$+$\frac{{b}_{2}}{{2}^{2}}$+…+$\frac{{b}_{n}}{{2}^{n}}$(n∈N+),求数列{bn}的前n项和Tn
(参考公式:12+22+…+n2=$\frac{1}{6}$n(n+1)(2n+1))

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.不等式|3x+1|>2+5x的解为(  )
A.x<-$\frac{3}{8}$B.x<-$\frac{1}{2}$C.x≤-$\frac{1}{2}$D.x≤-$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)计算:$\frac{{A}_{9}^{5}{+A}_{9}^{4}}{{A}_{10}^{6}{-A}_{10}^{5}}$;
(2)证明:${A}_{n+1}^{m+1}$=${A}_{n}^{m}$+n2${A}_{n-1}^{m-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若x.y满足约束条件$\left\{\begin{array}{l}{x+2y-2≥0}\\{x-y+1≥0}\\{2x-y-2≤0}\end{array}\right.$,则u=log2(3x+y)的取值范围是[0,${log}_{2}^{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.试用二重积分性质求下列极限
$\underset{lim}{n→∞}$$\frac{1}{{n}^{3}}$$\underset{∬}{D}$[$\sqrt{{x}^{2}+{y}^{2}}$]dσ.
这里D是圆域x2+y2≤n2,n是正整数,[$\sqrt{{x}^{2}+{y}^{2}}$]是不是大于$\sqrt{{x}^{2}+{y}^{2}}$的最大正整数.
(已知12+22+…+n2=$\frac{n(n+1)(2n+1)}{6}$)

查看答案和解析>>

同步练习册答案