精英家教网 > 高中数学 > 题目详情
1.已知函数$f(x)=lnx+\frac{1}{2}{x^2}-({a-1})x$.
(1)若函数f(x)存在单调递减区间,求实数a的取值范围;
(2)设x1,x2(x1>x2)是函数f(x)的两个极值点,若$a≥\frac{7}{2}$,求f(x1)-f(x2)的极大值.

分析 (1)求出函数的导数,问题转化为$x+\frac{1}{x}+1-a<0$有解,根据不等式的性质求出a的范围即可;
(2)求出函数的导数,得到f(x1)-f(x2)=$ln\frac{x_1}{x_2}+\frac{1}{2}({\frac{x_1^2-x_2^2}{{{x_1}{x_2}}}})=ln\frac{x_1}{x_2}+\frac{1}{2}({\frac{x_1}{x_2}-\frac{x_2}{x_1}})$,设$t=\frac{x_1}{x_2},t>1$,令$h(t)=lnt-\frac{1}{2}({t-\frac{1}{t}}),t>1$,根据函数的单调性求出函数的极大值即可.

解答 解:(1)∵$f(x)=lnx+\frac{1}{2}{x^2}-({a-1})x$,
∴$f'(x)=\frac{1}{x}+x({a-1})=\frac{{{x^2}-({a-1})x+1}}{x},x>0$,
由题意知f'(x)<0在(0,+∞)上有解,
即$x+\frac{1}{x}+1-a<0$有解,
∵x>0,∴$x+\frac{1}{x}≥2$,当且仅当x=1时等号成立,
要使$x+\frac{1}{x}<a-1$有解,
只需要$x+\frac{1}{x}$的最小值小于a-1,
∴2<a-1,解得实数a的取值范围是{a|a>3}.
(2)∵$f(x)=lnx+\frac{1}{2}{x^2}-({a-1})x$,
∴$f'(x)=\frac{1}{x}+x-({a-1})=\frac{{{x^2}-({a-1})x+1}}{x},x>0$,
由题意知f'(x)=0在(0,+∞)上有解,
∵x>0,设μ(x)=x2-(a-1)x+1,又$a≥\frac{7}{2}$,
∴△=(a-1)2-4>0,∴x1+x2=a-1,x1x2=1,
则$f({x_1})-f({x_2})=[{ln{x_1}+\frac{1}{2}x_1^2-({a-1}){x_1}}]-[{ln{x_2}+\frac{1}{2}x_2^2-({a-1}){x_2}}]$
=$ln\frac{x_1}{x_2}+\frac{1}{2}({x_1^2+x_2^2})-({a-1})({{x_1}-{x_2}})=ln\frac{x_1}{x_2}+\frac{1}{2}({x_1^2-x_2^2})-({{x_1}+{x_2}})({{x_1}-{x_2}})$
=$ln\frac{x_1}{x_2}+\frac{1}{2}({\frac{x_1^2-x_2^2}{{{x_1}{x_2}}}})=ln\frac{x_1}{x_2}+\frac{1}{2}({\frac{x_1}{x_2}-\frac{x_2}{x_1}})$,
∵x1>x2>0,所以设$t=\frac{x_1}{x_2},t>1$,
令$h(t)=lnt-\frac{1}{2}({t-\frac{1}{t}}),t>1$,则$h'(t)=\frac{1}{t}-\frac{1}{2}({1+\frac{1}{t}})=-\frac{{{{({t-1})}^2}}}{{2{t^2}}}<0$,
∴h(t)在(1,+∞)上单调递减,
∵$a≥\frac{7}{2}$,∴${({a-1})^2}≥\frac{25}{4}$,∴${({a-1})^2}={({{x_1}+{x_2}})^2}=\frac{{{{({{x_1}+{x_2}})}^2}}}{{{x_1}{x_2}}}=t+\frac{1}{t}+2≥\frac{25}{4}$,
∵t>1,∴由4t2-17t+4=(4t-1)(t-4)≥0,得t≥4,
∴$h(t)≤h(4)=ln4-\frac{1}{2}({4-\frac{1}{4}})=2ln2-\frac{15}{8}$,
故f(x1)-f(x2)的最大值为$2ln2-\frac{15}{8}$.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及换元思想,转化思想,考查不等式的性质,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=$\frac{1}{2}$x+2,则f(1)+f′(1)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}的通项公式an=nsin$\frac{nπ}{2}$,其前n项和为Sn,则S2016=-1008.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在平面直角坐标系xoy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e=$\frac{\sqrt{6}}{3}$,a=$\sqrt{6}$,直线l与x轴交于点E,与椭圆C交于A、B两点.
(1)求椭圆C的方程;
(2)若点E的坐标为($\frac{\sqrt{3}}{2}$,0),点A在第一象限且横坐标为$\sqrt{3}$,连结点A与原点O的直线交椭圆C于另一点P,求△PAE的面积;
(3)x轴上存在定点E,使得$\frac{1}{E{A}^{2}}$+$\frac{1}{E{B}^{2}}$恒为定值,请指出定点E的坐标,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$,该函数图象过点C$(\frac{3π}{8},0)$,函数图象上与点C相邻的一个最高点为D$(\frac{π}{8},2)$,
(1)求该函数的解析式f(x).
(2)求函数f(x)在区间$[-\frac{π}{4},\frac{π}{4}]$上的最值及其对应的自变量x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)若tanα=2,求$\frac{sin(2π-α)+cos(π+α)}{{cos(α-π)-cos(\frac{3π}{2}-α)}}$的值
(2)化简:$sin50°(1+\sqrt{3}tan10°)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某班有学生45人,现用系统抽样的方法,以座位号为编号,现抽取一个容量为3的样本,已知座位号分别为11,41的同学都在样本中,那么样本中另一位同学的座号应该是26.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若Z=$\frac{1-2i}{1-i}$,则|Z|=(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{10}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆E的中心在原点,焦点F1,F2在y轴上,离心率为$\frac{{2\sqrt{2}}}{3}$,P是椭圆E上的点,以线段PF1为直径的圆经过F2,且$9\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=1$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)作直线l与椭圆交于两个不同的点M,N,如果线段MN被直线2x+1=0平分,求直线l的倾斜角的取值范围.

查看答案和解析>>

同步练习册答案