【题目】某外语学校的一个社团有7名同学,其中2人只会法语,2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问.求:
(1)在选派的3人中恰有2人会法语的概率;
(2)求在选派的3人中既会法语又会英语的人数
的分布列.
科目:高中数学 来源: 题型:
【题目】给出下列说法:①对于独立性检验,
的观测值越大,说明两个分类变量之间的关系越强;②某中学有高一学生400人,高二学生300人,高三学生200人,学校团委欲用分层抽样的方法抽取18名学生进行问卷调查,则高一学生被抽到的概率最大;③通过回归直线
及回归系数
,可以精确反映变量的取值和变化趋势.其中正确的个数为( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线
:
与椭圆
有且只有一个公共点.
(Ⅰ)求椭圆
的方程及点
的坐标;
(Ⅱ)设
是坐标原点,直线
平行于
,与椭圆
交于不同的两点
、
,且与直线
交于点
,证明:存在常数
,使得
,并求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,已知曲线
的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴,建立极坐标系,直线
的极坐标方程为
.
(1)求曲线
的普通方程和直线
的直角坐标方程;
(2)若射线
的极坐标方程为
(
).设
与
相交于点
,
与
相交于点
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】部分与整体以某种相似的方式呈现称为分形,一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.分形几何学不仅让人们感悟到科学与艺木的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义.如图,由波兰数学家谢尔宾斯基1915年提出的谢尔宾斯基三角形就属于-种分形,具体作法是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形.
![]()
若在图④中随机选取-点,则此点取自阴影部分的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com