【题目】已知椭圆
:
的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线
:
与椭圆
有且只有一个公共点.
(Ⅰ)求椭圆
的方程及点
的坐标;
(Ⅱ)设
是坐标原点,直线
平行于
,与椭圆
交于不同的两点
、
,且与直线
交于点
,证明:存在常数
,使得
,并求
的值.
【答案】(Ⅰ)
,点T坐标为(2,1);(Ⅱ)
.
【解析】试题分析:本题考查椭圆的标准方程及其几何性质,考查学生的分析问题、解决问题的能力和数形结合的思想.第(Ⅰ)问,利用直线和椭圆只有一个公共点,联立方程,消去y得关于x的方程有两个相等的实数根,解出b的值,从而得到椭圆E的方程;第(Ⅱ)问,利用椭圆的几何性质,数形结合,根据根与系数的关系,进行求解.
试题解析:(Ⅰ)由已知,
,则椭圆E的方程为
.
由方程组
得
.①
方程①的判别式为
,由
,得
,
此时方程①的解为
,
所以椭圆E的方程为
.
点T坐标为(2,1).
(Ⅱ)由已知可设直线
的方程为
,
由方程组
可得![]()
所以P点坐标为(
),
.
设点A,B的坐标分别为
.
由方程组
可得
.②
方程②的判别式为
,由
,解得
.
由②得
.
所以
,
同理
,
所以![]()
![]()
![]()
.
故存在常数
,使得
.
科目:高中数学 来源: 题型:
【题目】为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABCD.其中AB=3百米,AD=
百米,且△BCD是以D为直角顶点的等腰直角三角形.拟修建两条小路AC,BD(路的宽度忽略不计),设∠BAD=
,
(
,
).
![]()
(1)当cos
=
时,求小路AC的长度;
(2)当草坪ABCD的面积最大时,求此时小路BD的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的方程为
,曲线
:
(
为参数,
),在以原点
为极点,
轴正半轴为极轴的极坐标系中,曲线
:
.
(1)求曲线
的普通方程和曲线
的直角坐标方程;
(2)若直线
与曲线
有公共点,且直线
与曲线
的交点
恰好在曲线
与
轴围成的区域(不含边界)内,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
第一种生产方式 | 第二种生产方式 | |||||||||||||||||||
8 | 6 | 5 | 5 | 6 | 8 | 9 | ||||||||||||||
9 | 7 | 6 | 2 | 7 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 6 | 8 | ||||||
9 | 8 | 7 | 7 | 6 | 5 | 4 | 3 | 3 | 2 | 8 | 1 | 4 | 4 | 5 | ||||||
2 | 1 | 1 | 0 | 0 | 9 | 0 | ||||||||||||||
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:
超过m | 不超过m | 总计 | |
第一种生产方式 | |||
第二种生产方式 | |||
总计 |
(3)根据(2)中的列表,能否有99%的把握认为两种生产方式的效率有差异?
附:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】北京市政府为做好
会议接待服务工作,对可能遭受污染的某海产品在进入餐饮区前必须进行两轮检测,只有两轮都合格才能进行销售,否则不能销售.已知该海产品第一轮检测不合格的概率为
,第二轮检测不合格的概率为
,两轮检测是否合格相互没有影响.
(1)求该海产品不能销售的概率.
(2)如果该海产品可以销售,则每件产品可获利40元;如果该海产品不能销售,则每件产品亏损80元(即获利-80元).已知一箱中有该海产品4件,记一箱该海产品获利
元,求
的分布列,并求出数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班随机抽查了
名学生的数学成绩,分数制成如图的茎叶图,其中
组学生每天学习数学时间不足
个小时,
组学生每天学习数学时间达到一个小时,学校规定
分及
分以上记为优秀,
分及
分以上记为达标,
分以下记为未达标.
![]()
(1)根据茎叶图完成下面的列联表:
达标 | 未达标 | 总计 | |
| |||
| |||
总计 |
(2)判断是否有
的把握认为“数学成绩达标与否”与“每天学习数学时间能否达到一小时”有关.
参考公式与临界值表:
,其中
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某外语学校的一个社团有7名同学,其中2人只会法语,2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问.求:
(1)在选派的3人中恰有2人会法语的概率;
(2)求在选派的3人中既会法语又会英语的人数
的分布列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com