精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,已知曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为.

1)求曲线的普通方程和直线的直角坐标方程;

2)若射线的极坐标方程为.相交于点相交于点,求.

【答案】1)曲线的普通方程为;直线的直角坐标方程为2

【解析】

1)利用消去参数,将曲线的参数方程化成普通方程,利用互化公式

将直线的极坐标方程化为直角坐标方程;

(2)根据(1)求出曲线的极坐标方程,分别联立射线与曲线以及射线与直线的极坐标方程,求出,即可求出.

解:(1)因为为参数),所以消去参数,得

所以曲线的普通方程为.

因为所以直线的直角坐标方程为.

2)曲线的极坐标方程为.

的极径分别为

)代入,解得

)代入,解得.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了丰富学生的课外文化生活,某中学积极探索开展课外文体活动的新途径及新形式,取得了良好的效果.为了调查学生的学习积极性与参加文体活动是否有关,学校对300名学生做了问卷调查,列联表如下:

参加文体活动

不参加文体活动

合计

学习积极性高

180

学习积极性不高

60

合计

300

已知在全部300人中随机抽取1人,抽到学习积极性不高的学生的概率为.

(1)请将上面的列联表补充完整;

(2)是否有的把握认为学习积极性高与参加文体活动有关?请说明你的理由;

(3)若从不参加文体活动的同学中按照分层抽样的方法选取5人,再从所选出的5人中随机选取2人,求至少有1人学习积极性不高的概率.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京市政府为做好会议接待服务工作,对可能遭受污染的某海产品在进入餐饮区前必须进行两轮检测,只有两轮都合格才能进行销售,否则不能销售.已知该海产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,两轮检测是否合格相互没有影响.

1)求该海产品不能销售的概率.

2)如果该海产品可以销售,则每件产品可获利40元;如果该海产品不能销售,则每件产品亏损80元(即获利-80元).已知一箱中有该海产品4件,记一箱该海产品获利元,求的分布列,并求出数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班随机抽查了名学生的数学成绩,分数制成如图的茎叶图,其中组学生每天学习数学时间不足个小时,组学生每天学习数学时间达到一个小时,学校规定分及分以上记为优秀,分及分以上记为达标,分以下记为未达标.

1)根据茎叶图完成下面的列联表:

达标

未达标

总计

总计

2)判断是否有的把握认为“数学成绩达标与否”与“每天学习数学时间能否达到一小时”有关.

参考公式与临界值表:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将圆上每一点的横坐标保持不变,纵坐标变为原来的,得曲线

1)求出的参数方程;

2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,设是曲线上的一个动点,求点到直线距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某外语学校的一个社团有7名同学,其中2人只会法语,2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问.求:

1)在选派的3人中恰有2人会法语的概率;

2)求在选派的3人中既会法语又会英语的人数的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥S-ABC中,SA⊥平面ABCABBCSAAB=1,BC,则三棱锥外接球的表面积等于______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中e为自然对数的底数.

1)若=0,求函数的单调区间;

2)若,证明0时,

查看答案和解析>>

同步练习册答案