【题目】三棱锥S-ABC中,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=
,则三棱锥外接球的表面积等于______.
【答案】
;
【解析】
根据题意,证出BC⊥平面SAB,可得BC⊥SB,得Rt△BSC的中线OB
SC,同理得到OA
SC,因此O是三棱锥S﹣ABC的外接球心.利用勾股定理结合题中数据算出SC=2,得外接球半径R=1,从而得到所求外接球的表面积.
取SC的中点O,连结OA、OB
∵SA⊥平面ABC,AC
平面ABC,
∴SA⊥AC,可得Rt△ASC中,中线OA
SC
又∵SA⊥BC,AB⊥BC,SA、AB是平面SAB内的相交直线
∴BC⊥平面SAB,可得BC⊥SB
因此Rt△BSC中,中线OB
SC
∴O是三棱锥S﹣ABC的外接球心,
∵Rt△SCA中,AC
,SA=1
∴SC
2,可得外接球半径R
SC=1
因此,外接球的表面积S=4πR2=4π
故答案为:4π.
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,已知曲线
的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴,建立极坐标系,直线
的极坐标方程为
.
(1)求曲线
的普通方程和直线
的直角坐标方程;
(2)若射线
的极坐标方程为
(
).设
与
相交于点
,
与
相交于点
,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】部分与整体以某种相似的方式呈现称为分形,一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.分形几何学不仅让人们感悟到科学与艺木的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义.如图,由波兰数学家谢尔宾斯基1915年提出的谢尔宾斯基三角形就属于-种分形,具体作法是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形.
![]()
若在图④中随机选取-点,则此点取自阴影部分的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
,则“存在常数
,对任意的
,且
,都有
”是“数列
为等差数列”的( )
A. 充分而不必要条件 B. 必要而不充分条件
C. 充分必要条件 D. 既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学将收集到的六组数据制作成散点图如图所示,并得到其回归直线的方程为
,计算其相关系数为
,相关指数为
.经过分析确定点F为“离群点”,把它去掉后,再利用剩下的5组数据计算得到回归直线的方程为
,相关系数为
,相关指数为
.以下结论中,不正确的是( )
![]()
A.
>
B.
>0,
>0C.
=0.12D.0<
<0.68
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com