【题目】已知数列
,则“存在常数
,对任意的
,且
,都有
”是“数列
为等差数列”的( )
A. 充分而不必要条件 B. 必要而不充分条件
C. 充分必要条件 D. 既不充分也不必要条件
【答案】C
【解析】
由等差数列的定义不妨令m=n+1,则有:an+1﹣an=c,可知,数列{an}是以c为公差的等差数列,由等差数列的通项公式an=a1+(n﹣1)d,am=a1+(m﹣1)d,(d为公差)得:
,故得解.
①由已知:“存在常数c,对任意的m,n∈N*,且m≠n,都有
”
不妨令m=n+1,则有:an+1﹣an=c,由等差数列的定义,
可知,数列{an}是以c为公差的等差数列,
②由“数列{an}为等差数列”则an=a1+(n﹣1)d,am=a1+(m﹣1)d,(d为公差)
所以:
,
即存在“存在常数c,对任意的m,n∈N*,且m≠n,都有
”此时,c=d,
综合①②得:“存在常数c,对任意的m,n∈N*,且m≠n,都有
”
是“数列{an}为等差数列”的充分必要条件,
故选:C.
科目:高中数学 来源: 题型:
【题目】北京市政府为做好
会议接待服务工作,对可能遭受污染的某海产品在进入餐饮区前必须进行两轮检测,只有两轮都合格才能进行销售,否则不能销售.已知该海产品第一轮检测不合格的概率为
,第二轮检测不合格的概率为
,两轮检测是否合格相互没有影响.
(1)求该海产品不能销售的概率.
(2)如果该海产品可以销售,则每件产品可获利40元;如果该海产品不能销售,则每件产品亏损80元(即获利-80元).已知一箱中有该海产品4件,记一箱该海产品获利
元,求
的分布列,并求出数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在等差数列
中,已知公差
,
,且
,
,
成等比数列.
(1)求数列
的通项公式
;
(2)求
.
【答案】(1)
;(2)100
【解析】试题分析:(1)根据题意
,
,
成等比数列得
得
求出d即可得通项公式;(2)求项的绝对前n项和,首先分清数列有多少项正数项和负数项,然后正数项绝对值数值不变,负数项绝对值要变号,从而得
,得
,由
,得
,∴
计算 即可得出结论
解析:(1)由题意可得,则
,
,
,即
,
化简得
,解得
或
(舍去).
∴
.
(2)由(1)得
时,
由
,得
,由
,得
,
∴
![]()
.
∴
.
点睛:对于数列第一问首先要熟悉等差和等比通项公式及其性质即可轻松解决,对于第二问前n项的绝对值的和问题,首先要找到数列由多少正数项和负数项,进而找到绝对值所影响的项,然后在求解即可得结论
【题型】解答题
【结束】
18
【题目】甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1元; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.
(I)请将两家公司各一名推销员的日工资
(单位: 元) 分别表示为日销售件数
的函数关系式;
(II)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图。若记甲公司该推销员的日工资为
,乙公司该推销员的日工资为
(单位: 元),将该频率视为概率,请回答下面问题:
某大学毕业生拟到两家公司中的一家应聘推销员工作,如果仅从日均收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在首届中国国际商品博览会期间,甲、乙、丙三家供货公司各签订了两个供货合同,已知这三家公司供货合同中金额分别是300万元和600万元、300万元和900万元、600万元和900万元,甲看了乙的供货合同说:“我与乙的供货合同中金额相同的合同不是600万元”,乙看了丙的供货合同说:“我与丙的供货合同中金额相同的合同不是300万元”,丙说:“我的两个供货合同中金额之和不是1500万元”,则甲签订的两个供货合同中金额之和是( )
A.900万B.1500万元C.不能确定D.1200万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15-65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:
年龄 |
|
|
|
|
|
支持“延迟退休”的人数 | 15 | 5 | 15 | 28 | 17 |
![]()
(1)由以上统计数据填2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;
45岁以下 | 45岁以上 | 总计 | |
支持 | |||
不支持 | |||
总计 |
参考数据:
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
,其中
.
(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动、现从这8人中随机抽2人.记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校实行自主招生,参加自主招生的学生从8个试题中随机挑选出4个进行作答,至少答对3个才能通过初试,已知甲、乙两人参加初试,在这8个试题中甲能答对6个,乙能答对每个试题的概率为
,且甲、乙两人是否答对每个试题互不影响.
(1)试通过概率计算,分析甲、乙两人谁通过自主招生初试的可能性更大;
(2)若答对一题得5分,答错或不答得0分,记乙答题的得分为
,求
的分布列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com