精英家教网 > 高中数学 > 题目详情
13.已知z1=m2+$\frac{1}{m+1}$i,z2=(2m-3)+$\frac{1}{2}$i,m∈R,i为虚数单位.且z1+z2是纯虚数.
(Ⅰ)求实数m的值.
(Ⅱ)求z1•$\overline{z_2}$的值.

分析 (Ⅰ)求出z1+z2,根据纯虚数的定义求出m的值即可;
(Ⅱ)求出$\overline{{z}_{2}}$,从而求出z1•$\overline{z_2}$的值.

解答 解:(Ⅰ)${z_1}+{z_2}=({m^2}+2m-3)+(\frac{1}{m+1}+\frac{1}{2})i$,
∵z1+z2是纯虚数,
∴$\left\{\begin{array}{l}{m^2}+2m-3=0\\ \frac{1}{m+1}+\frac{1}{2}≠0\end{array}\right.$,
则m=1;
(Ⅱ)由(Ⅰ)得${z_1}=1+\frac{1}{2}i$,${z_2}=-1+\frac{1}{2}i$,
则$\overline{z_2}=-1-\frac{1}{2}i$,
∴${z_1}•\overline{z_2}=(1+\frac{1}{2}i)(-1-\frac{1}{2}i)$=$-{(1+\frac{1}{2}i)^2}$=$-(\frac{3}{4}+i)$=$-\frac{3}{4}-i$.

点评 本题主要考查复数的有关概念及四则运算等基本知识.考查概念识记、运算化简能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知某几何体的三视图如图所示,则该几何体的表面积为(  )
A.4+$\frac{3π}{2}$B.4+3πC.4+πD.4+$\sqrt{3}$+$\frac{3π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C所对的边a,b,c满足$\frac{cosB}{cosC}$+$\frac{b}{c}$=$\frac{2a}{c}$.
(1)求角C的大小;
(2)若边长c=$\sqrt{3}$,求a+2b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设ξ~B(n,p),若有Eξ=8,Dξ=4,则n,p的值分别为(  )
A.16 和$\frac{1}{2}$B.15和$\frac{1}{4}$C.18和$\frac{2}{3}$D.20和$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若S=1×1!+2×2!+3×3!+…+2016×2016!,则S的个位数字是(  )
A.0B.1C.3D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知离散型随机变量ξ~B(n,p),且E(2ξ+1)=5.8,D(ξ)=1.44,那么n,p的值分别为(  )
A.n=4,p=0.6B.n=6,p=0.4C.n=8,p=0.3D.n=24,p=0.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一个口袋装有大小相同的小球9个,其中红球2个、黑球3个、白球4个,现从中抽取2次,每次抽取一个球.
(Ⅰ)若有放回地抽取2次,求两次所取的球的颜色不同的概率;
(Ⅱ)若不放回地抽取2次,取得红球记2分,取得黑球记1分,取得白球记0分,记两次取球的得分之和为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图.
(Ⅰ)若直方图中后四组的频数成等差数列,计算高三全体学生视力在5.0以下的人数,并估计这100名学生视力的中位数(精确到0.1);
(Ⅱ)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对高三全体学生成绩名次在前50名和后50名的学生进行了调查,得到如表1中数据,根据表1及临界值表2中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
表一
 年级名次
是否近视
前50名后50名
近视4234
不近视816
附:临界值表2
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某单位在周一到周六的六天中安排4人值夜班,每人至少值一天,至多值两天,值两天的必须是相邻的两天,则不同的值班安排种数为144(用数字作答).

查看答案和解析>>

同步练习册答案