精英家教网 > 高中数学 > 题目详情
5.在△ABC中,若lga-lgc=lgsinA=-lg$\sqrt{2}$,并且A为锐角,则△ABC的形状为等腰直角三角形.

分析 由已知得sinA=$\frac{\sqrt{2}}{2}$,$\frac{sinA}{sinC}$=$\frac{\sqrt{2}}{2}$,sinC=1,结合角的范围,可求A,B,C的值,由此能推导出△ABC为等腰直角三角形,

解答 解:∵lgsinA=-lg$\sqrt{2}$,可得:sinA=$\frac{\sqrt{2}}{2}$,
∵A为锐角,
∴A=45°.
又∵lga-lgc═-lg$\sqrt{2}$,
∴$\frac{a}{c}$=$\frac{\sqrt{2}}{2}$.
由正弦定理,得$\frac{sinA}{sinC}$=$\frac{\sqrt{2}}{2}$,解得:sinC=1,C=90°,
∴B=180°-A-C=45°,
故△ABC为等腰直角三角形.
故答案为:等腰直角.

点评 本题考查三角形形状的判断,解题时要注意正弦定理和对数性质的合理运用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若x,y满足约束条件$\left\{{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}}\right.$则$\frac{x+2y}{2x+y}$的取值范围为[1,$\frac{7}{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.椭圆16x2+25y2-64x+150y-111=0的焦点坐标是(  )
A.(3,0)和(-3,0)B.(0,-2)和(6,-2)C.(3,1)和(3,-5)D.(-1,-3)和(5,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点O是四边形ABCD所在平面外任意一点,且$\overrightarrow{OD}$=2$\overrightarrow{OA}$+x$\overrightarrow{OB}$-y$\overrightarrow{OC}$(x,y∈R),则x2+y2的最小值为(  )
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知tanα=2,求1-3sinαcosα+3cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)是定义在R上的奇函数,且在区间[0,+∞)上是增函数,则不等式$\frac{|f(lnx)-f(ln\frac{1}{x})|}{2}$<f(1)的解集为(  )
A.(0,$\frac{1}{e}$)B.(0,e)C.($\frac{1}{e}$,e)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,若b2-c2-a2=-ac,则B等于(  )
A.120°B.30°或150°C.45°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}中,a1=1,a2=2,an+2=an+1-an,试写出a3,a4,a5,a6,a7,a8,你发现数列{an}具有怎样的规律?你能否求出该数列中的第2014项是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|x2-x-2≤0,x∈R},B={x|lg(x+1)<1,x∈Z},则A∩B=(  )
A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}

查看答案和解析>>

同步练习册答案