精英家教网 > 高中数学 > 题目详情
12.若$\int_1^2$(x-a)dx=$\frac{1}{2}}$,则a=1.

分析 求出定积分,得到关于a 的等式,解出a.

解答 解:因为$\int_1^2$(x-a)dx=$\frac{1}{2}}$=($\frac{1}{2}{x}^{2}-ax$)|${\;}_{1}^{2}$=2-2a-$\frac{1}{2}$+a=$\frac{1}{2}$,解得a=1;
故答案为:1.

点评 本题考查了定积分的计算;关键是正确找出原函数,得到关于a的方程解之.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知函数y=f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x、y∈R,等式f(x)f(y)=f(x+y)恒成立.若数列{an}满足a1=f(0),且f(an+1)=$\frac{1}{{f(-2-{a_n})}}$(n∈N*),则a2015的值为(  )
A.4029B.3029C.2249D.2209

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.sin(-1200°)=(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(-1,m),若$\overrightarrow a$⊥$\overrightarrow b$,则m=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)=$\left\{\begin{array}{l}{\frac{2x+1}{{x}^{2}},x<-\frac{1}{2}}\\{ln(x+1),x≥-\frac{1}{2}}\end{array}\right.$,g(x)=x2-4x-4,若f(a)+g(b)=0,则b的取值范围为[-1,5].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数中,既是奇函数又是增函数的是(  )
A.y=x+1B.y=-x2C.y=x|x|D.y=x-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数r(x)=alnx,s(x)=b(x-$\frac{1}{x}$),a,b为实数且a≠0.
(1)设函数f(x)=r(x)+s(x).当a=-2时,f(x)在其定义域内为单调增函数,求b的取值范围;
(2)设函数g(x)=r(x)-s(x)+x.当b=1时,在区间(0,e](其中e为自然对数的底数)上是否存在实数x0,使得g(x0)<0成立,若存在,求实数a的取值范围; 若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知在三棱锥A-BCD中,AB=CD,且点M,N分别是BC,AD的中点.若直线AB⊥CD,则直线AB与MN所成的角为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.△ABC中,角A、B、C所对的边分别为a,b,c,已知a+c=6$\sqrt{3}$,b=6
(1)求cosB的最小值    
(2)若$\overrightarrow{BA}$•$\overrightarrow{BC}$=12,求A的大小.

查看答案和解析>>

同步练习册答案