精英家教网 > 高中数学 > 题目详情
2.已知m∈{-1,0,1},n∈{-2,2},若随机选取m,n,则直线mx+ny+1=0上存在第二象限的点的概率是$\frac{1}{2}$.

分析 先求出基本事件总数,再利用列举法求出满足条件的m,n的可能取值,由此能求出直线mx+ny+1=0上存在第二象限的点的概率.

解答 解:∵m∈{-1,0,1},n∈{-2,2},随机选取m,n,
∴基本事件总数n=3×2=6,
∵直线mx+ny+1=0上存在第二象限的点,
∴k=-$\frac{m}{n}$<0,或m=0,n=-2,
∴m,n的可能取值为(0,-2),(-1,-2),(1,2),
∴直线mx+ny+1=0上存在第二象限的点的概率是:
P=$\frac{3}{6}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2sin$\frac{ωx}{2}$($\sqrt{3}$cos$\frac{ωx}{2}$-sin$\frac{ωx}{2}$)(ω>0)的最小正周期为3π.
(Ⅰ)求ω的值和函数f(x)在区间$[{-π,\frac{3π}{4}}]$上的最大值和最小值;
(Ⅱ)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2$\sqrt{3}$,c=4,且f($\frac{3}{2}$A)=1,求b和△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.三个正数成等比数列,它们的积等于27,它们的平方和等于91,则这三个数的和为13.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设a∈R,i是虚数单位,若(a+i)(1-i)为纯虚数,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知各项均为正数的等比数列{an}中,2a7+a8=a9.数列{bn}满足bn=log2an,且其前10项为45,则数列{an}的通项公式为an=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.执行如图所示的伪代码,则输出的结果的集合为{2,5,10}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.由函数y=lnx和y=ex-1的图象与直线x=1所围成的封闭图形的面积是e-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若不等式x-10>0或x+2<0成立时,不等式x-m>1或x+m<1(m>0)不恒成立,且若不等式x-m>1或x+m<1(m>0)成立时,不等式x一10>0或x+2<0成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设a=$\frac{1}{{\sqrt{2}}}$(cos34°-sin34°),b=cos50°cos128°+cos40°cos38°,c=$\frac{1}{2}$(cos80°-2cos250°+1),则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

同步练习册答案