精英家教网 > 高中数学 > 题目详情
14.由函数y=lnx和y=ex-1的图象与直线x=1所围成的封闭图形的面积是e-1.

分析 做出函数y=lnx和y=ex-1的图象及x=1,求出交点坐标,可知封闭图形的面积为函数ex-1-lnx在1到e的定积分,即可求得结论.

解答 解:由函数y=lnx和y=ex-1的图象与直线x=1所围成的封闭图形如图
则A(1,e)、B(e,1)、C(0,1),
则封闭图形的面积S=${∫}_{1}^{e}(e{x}^{-1}-lnx)dx$=(elnx-xlnx+x)${丨}_{1}^{e}$=e-1,
故答案为:e-1.

点评 本题求两条曲线围成的曲边图形的面积,着重考查了定积分的几何意义和积分计算公式等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.若直线ax-by+1=0平分圆C:x2+y2+2x-4y+1=0的周长,则ab的取值范围是$(-∞,\frac{1}{8}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C的对边分别为a,b,c,C=$\frac{2π}{3}$,且a2-(b-c)2=(2-$\sqrt{3}$)bc.
(Ⅰ)求角B的大小;
(Ⅱ)若等差数列{an}的公差不为零,且a1•cos2B=1,且a2,a4,a8成等比数列,求{${\frac{4}{{{a_n}{a_{n+1}}}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知m∈{-1,0,1},n∈{-2,2},若随机选取m,n,则直线mx+ny+1=0上存在第二象限的点的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线l:xsinα-ycosα=1,其中α为常数且α∈[0,2π],则错误的结论是(  )
A.直线l的倾斜角为α
B.无论α为何值,直线l总与一定圆相切
C.若直线l与两坐标轴都相交,则与两坐标轴围成的三角形的面积不小于1
D.若P(x,y)是直线l上的任意一点,则x2+y2≥1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC的内角A,B,C的对边分别为a,b,c,且满足sin(2A+B)=2sinA+2cos(A+B)sinA
(Ⅰ)求$\frac{a}{b}$的值;
(Ⅱ)若△ABC的面积为$\frac{{\sqrt{3}}}{2}$,且a=1,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知等差数列{an}的前n项和为Sn,若a3,a5是方程x2-8x+15=0的两根,则S7=28.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,若|PF|=4,点P到y轴的距离等于等于3,则点F的坐标为(  )
A.(-1,0)B.(1,0)C.(2,0)D.(-2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直线y=kx+1与抛物线y2=2x至多有一个公共点,则k的取值范围{0}∪[$\frac{1}{2}$,+∞).

查看答案和解析>>

同步练习册答案