分析 (1)推导出CD⊥PA,CD⊥AC,由此能证明CD⊥平面PAC.
(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出二面角C-PD-A的余弦值.
解答
证明:(1)∵PA⊥平面ABCD,CD?平面ABCD,
∴CD⊥PA,
∵AD∥BC,∠ABC=90°,AB=BC=2,PA=AD=4,
∴∠BCD=135°,∠BCA=45°,∴∠ACD=90°,
∴CD⊥AC,
∵PA∩AC=A,∴CD⊥平面PAC.
解:(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,
A(0,0,0),P(0,0,4),C(2,2,0),D(0,4,0),
$\overrightarrow{PC}$=(2,2,-4),$\overrightarrow{PD}$=(0,4,-4),
设平面PCD的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PC}=2x+2y-4z=0}\\{\overrightarrow{n}•\overrightarrow{PD}=4y-4z=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(1,1,1),
平面PDA的法向量$\overrightarrow{m}$=(1,0,0),
设二面角C-PD-A的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{3}}$=$\frac{\sqrt{3}}{3}$.
∴二面角C-PD-A的余弦值为$\frac{\sqrt{3}}{3}$.
点评 本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 5 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5,10,15,20,25 | B. | 2,4,6,8,10 | C. | 1,2,3,4,5 | D. | 7,17,27,37,47 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{e}$ | B. | -e | C. | e | D. | $\frac{1}{e}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{45}{2}$ | B. | $\frac{16}{3}$ | C. | 9-$\frac{π}{6}$ | D. | 27-$\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 24 | B. | 23 | C. | 32 | D. | 28 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1±\sqrt{5}}{2}$ | B. | $\frac{\sqrt{5}±1}{2}$ | C. | $\frac{1+\sqrt{5}}{2}$ | D. | $\frac{\sqrt{5}-1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com