精英家教网 > 高中数学 > 题目详情
7.已知在数列{an}中,a1=2,an=2-$\frac{1}{{a}_{n-1}}$(n≥2,n∈N*),设Sn是数列{bn}的前n项和,bn=lgan,则S99的值是(  )
A.2B.3C.5D.4

分析 利用两边取倒数将递推公式化简变形为:$\frac{1}{{a}_{n}-1}-\frac{1}{{a}_{n-1}-1}$=1,利用等差数列的定义和通项公式可得an,代入bn=lgan利用对数的运算性质化简,利用“裂项相消法”求出Sn,即可得到答案.

解答 解:∵an=2-$\frac{1}{{a}_{n-1}}$(n≥2,n∈N*),
∴an-1=1-$\frac{1}{{a}_{n-1}}$=$\frac{{a}_{n-1}-1}{{a}_{n-1}}$(n≥2,n∈N*),
两边取倒数得,$\frac{1}{{a}_{n}-1}=\frac{{a}_{n-1}}{{a}_{n-1}-1}$=$\frac{{a}_{n-1}-1+1}{{a}_{n-1}-1}$=$\frac{1}{{a}_{n-1}-1}$+1,
∴$\frac{1}{{a}_{n}-1}-\frac{1}{{a}_{n-1}-1}$=1
∴数列{$\frac{1}{{a}_{n}-1}$}是等差数列,且首项为1、公差为1,
则$\frac{1}{{a}_{n}-1}$=1+n-1=n,解得an=$\frac{n+1}{n}$,
∴bn=lgan═lg(n+1)-lgn,
∴Sn=(lg2-lg1)+(lg3-lg2)+…+[(lgn-lg(n-1)]+[lg(n+1)-lgn)
=lg(n+1)-lg1=lg(n+1),
∴S99=lg100=2.
故选:A.

点评 本题考查数列的递推公式化简及应用,对数的运算性质,等差数列的定义和通项公式,以及利用裂项相消法求数列的前n项和,考查化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A、B、C的对边分别为a、b、c,且sinCcosB+sinBcosC=3sinAcosB.
(1)求cosB的值;
(2)若$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,且b=2$\sqrt{2}$,求a和c的值.
(3)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,内角A、B、C的对边分别是a、b、c,且a2=b2+c2+$\sqrt{3}$ab.
(Ⅰ)求A;
(Ⅱ)设a=$\sqrt{3}$,S为△ABC的面积,求S+3cosBcosC的最大值,并指出此时B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.三角形的两边分别为3cm,5cm,它们所夹角的余弦值为方程5x2-7x-6=0的根,则这个三角形的面积为(  )
A.6cm2B.7cm2C.9cm2D.10cm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将4名专家分配到A,B,C三个项目中,则每个项目至少安排一名专家,且甲专家不分配到A 项目的概率等于(  )
A.$\frac{8}{27}$B.$\frac{1}{3}$C.$\frac{10}{27}$D.$\frac{11}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知复数 a=3+2i,b=4+mi,若复数($\frac{a}{b}$)2<0,则实数m 的值为(  )
A.3B.-3C.6D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合M={x|y=$\sqrt{3-{x}^{2}}$},N={x||x+1|≤2},全集I=R,则图中阴影部分表示的集合为(  )
A.{x|-$\sqrt{3}$≤x≤1}B.{x|-3≤x≤1}C.{x|-3≤x<-$\sqrt{3}$}D.{x|1≤x≤$\sqrt{3}$}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.函数r=f(P)的图象如图所示
(Ⅰ)函数r=f(P)的定义域和值域分别是什么?
(Ⅱ)r取何值时,只有唯一的P值与之对应?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,∠ABC=90°,AB=BC=2,PA=AD=4.
(1)求证:CD⊥平面PAC;(2)求二面角C-PD-A的余弦值.

查看答案和解析>>

同步练习册答案