分析 (1)根据正弦定理和诱导公式化简已知的式子,由内角的范围即可求出cosB的值;
(2)根据条件和数量积的运算可求出ac的值,由余弦定理列出方程,联立方程后求出a和c的值;
(3)由B的范围和平方关系求出sinB的值,代入三角形的面积公式求出△ABC的面积即可.
解答 解:(1)由sinCcosB+sinBcosC=3sinAcosB得,
sin(B+C)=3sinAcosB …(2分)
因为A、B、C是△ABC的三内角,
所以sin(B+C)=sinA≠0,…(3分)
因此$cosB=\frac{1}{3}$…(4分)
(2)∵$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,∴|$\overrightarrow{BA}$|•|$\overrightarrow{BC}$|cosB=$\frac{1}{3}$ac=2,则ac=6 …(6分)
又b=2$\sqrt{2}$,则由余弦定理得,
b2=a2+c2-2accosB,所以a2+c2=12,…(8分)
解方程组$\left\{\begin{array}{l}{ac=6}\\{{a}^{2}+{c}^{2}=12}\end{array}\right.$,得$a=c=\sqrt{6}$…(10分)
(3)∵0<B<π,且$cosB=\frac{1}{3}$,
∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{2\sqrt{2}}{3}$,
则△ABC的面积S=$\frac{1}{2}acsinB=\frac{1}{2}×\sqrt{6}×\sqrt{6}×\frac{2\sqrt{2}}{3}=2\sqrt{2}$…(12分)
点评 本题考查了正弦定理、余弦定理,数量积的运算,以及三角形的面积公式的应用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $\frac{7}{2}$ | C. | 2$\sqrt{3}$ | D. | $\frac{9}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 学历 | 35岁以下 | 35至50岁 | 50岁以上 |
| 本科 | 80 | 30 | 20 |
| 研究生 | x | 20 | y |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 5 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com