精英家教网 > 高中数学 > 题目详情
2.判断下列函数的奇偶性:
(1)f(x)=$\sqrt{cosx-1}$;
(2)f(x)=$\frac{sinx-si{n}^{2}x}{1-sinx}$.

分析 先求出函数的定义域,结合函数奇偶性的定义进行判断即可.

解答 解:(1)由cosx-1≥0得cosx≥1,则cos=1,则x=2kπ,
则f(x)=0,则函数f(x)为既是奇函数也是偶函数,
(2)由1-sinx≠0得sinx≠1,即x≠2kπ+$\frac{π}{2}$,则定义域关于原点不对称,则函数f(x)为非奇非偶函数.

点评 本题主要考查函数奇偶性的判断,先求出函数的定义域,利用定义域是否关于原点对称是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下面给出了四个类比推理.
①a,b为实数,若a2+b2=0则a=b=0;类比推出:z1、z2为复数,若z12+z22=0,则z1=z2=0.
②若数列{an}是等差数列,bn=$\frac{1}{n}$(a1+a2+a3+…+an),则数列{bn}也是等差数列;类比推出:若数列{cn}是各项都为正数的等比数列,dn=$\root{n}{{c}_{1}•{c}_{2}•{c}_{3}•…•{c}_{n}}$,则数列{dn}也是等比数列.
③若a、b、c∈R.则(ab)c=a(bc);类比推出:若$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$为三个向量.则($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$与$\overrightarrow{a}$•($\overrightarrow{b}$•$\overrightarrow{c}$)
④若圆的半径为a,则圆的面积为πa2;类比推出:若椭圆的长半轴长为a,短半轴长为b,则椭圆的面积为πab.
上述四个推理中,结论正确的是(  )
A.①②B.②③C.①④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=alnx+bx2+x(a,b∈R).
(1)若a=-1,b=0,求f(x)的最小值;
(2)若f(1)=f′(1)=0,求f(x)的单调递减区间;
(3)若a=b=1,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,证明x1+x2≥$\frac{{\sqrt{5}-1}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A、B、C的对边分别为a、b、c,且sinCcosB+sinBcosC=3sinAcosB.
(1)求cosB的值;
(2)若$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,且b=2$\sqrt{2}$,求a和c的值.
(3)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数 f(x)=$\left\{\begin{array}{l}{2{x}^{3}+{x}^{2}+1,x≤0}\\{{e}^{ax},x>0}\end{array}\right.$在[-2,3]上的最大值为2,则实数a的取值范围是(  )
A.[$\frac{1}{3}$ln2,+∞)B.[0,$\frac{1}{3}$ln2]C.(-∞,0]D.(-∞,$\frac{1}{3}$ln2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.命题“对任意x∈[1,2],x2-a≤0”为真命题的一个充分不必要条件可以是(  )
A.a≥4B.a>4C.a≥1D.a>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设全集R,M={x|x≤0,x∈R},N={x∈Z+|x<$\int_0^2$xdx},则(∁RM)∩N等于(  )
A.{0}B.{1}C.{1,2,}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,内角A、B、C的对边分别是a、b、c,且a2=b2+c2+$\sqrt{3}$ab.
(Ⅰ)求A;
(Ⅱ)设a=$\sqrt{3}$,S为△ABC的面积,求S+3cosBcosC的最大值,并指出此时B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合M={x|y=$\sqrt{3-{x}^{2}}$},N={x||x+1|≤2},全集I=R,则图中阴影部分表示的集合为(  )
A.{x|-$\sqrt{3}$≤x≤1}B.{x|-3≤x≤1}C.{x|-3≤x<-$\sqrt{3}$}D.{x|1≤x≤$\sqrt{3}$}

查看答案和解析>>

同步练习册答案