精英家教网 > 高中数学 > 题目详情
15.三角形的两边分别为3cm,5cm,它们所夹角的余弦值为方程5x2-7x-6=0的根,则这个三角形的面积为(  )
A.6cm2B.7cm2C.9cm2D.10cm2

分析 解方程5x2-7x-6=0可得cosθ=-$\frac{3}{5}$,利用同角三角函数的基本关系可得sinθ=$\frac{4}{5}$,代入三角形的面积公式即可求得结果.

解答 解:解方程5x2-7x-6=0可得此方程的根为2或-$\frac{3}{5}$,
故夹角的余弦cosθ=-$\frac{3}{5}$,
∴sinθ=$\sqrt{1-co{s}^{2}θ}$=$\frac{4}{5}$.
则这个三角形的面积S=$\frac{1}{2}×3×5×sinθ$=6.
故选:A.

点评 本题主要考查余弦定理,同角三角函数的基本关系,求出cosθ=-$\frac{3}{5}$,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.当n为正整数时,区间In=(n,n+1),an表示函数f(x)=$\frac{1}{3}$x3-x在In上函数值取整数值的个数,当n>1时,记bn=an-an-1.当x>0,g(x)表示把x“四舍五入”到个位的近似值,如g(0.48)=0,g($\sqrt{2}$)=1,g(2.76)=3,g(4)=4,…,当n为正整数时,cn表示满足g($\sqrt{k}$)=n的正整数k的个数.
(Ⅰ)求b2,c2
(Ⅱ) 求证:n>1时,bn=cn
(Ⅲ) 当n为正整数时,集合Mn={${\frac{1}{2^k}$|g($\sqrt{k}$)=n,k∈N+}中所有元素之和为Sn,记Tn=(2n+2-n)Sn,求证:T1+T2+T3+…+Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某学校制定学校发展规划时,对现有教师进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如表:
学历35岁以下35至50岁50岁以上
本科803020
研究生x20y
(Ⅰ)用分层抽样的方法在35至50岁年龄段的教师中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有l人的学历为研究生的概率;
(Ⅱ)在该校教师中按年龄状况用分层抽样的方法抽取N个人,其中35岁以下48人,50岁以上10人,再从这N个人中随机抽取l人,此人的年龄为50岁以上的概率为$\frac{5}{39}$,求x、y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知α,β,γ均成公差为$\frac{π}{3}$的等差数列,若cosβ=$\frac{3}{5}$,则cosα+cosγ=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设A={1,4,x},B={1,x2},若B⊆A,则x等于(  )
A.0B.-2C.0或-2D.0或±2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)是定义在R上的奇函数,若f(x)的最小正周期为4,且f(1)>1,f(2)=m2-2m,$f(3)=\frac{2m-5}{m+1}$,则实数m的取值集合是(  )
A.$\{m|m<\frac{2}{3}\}$B.{0,2}C.$\{m|-1<m<\frac{4}{3}\}$D.{0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知在数列{an}中,a1=2,an=2-$\frac{1}{{a}_{n-1}}$(n≥2,n∈N*),设Sn是数列{bn}的前n项和,bn=lgan,则S99的值是(  )
A.2B.3C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.角α的终边经过两点P(3a,4a),Q(a+1,2a)(a≠0),则角α的正弦值等于(  )
A.$-\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$±\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x<0}\\{lnx,x>0}\end{array}\right.$,则f[f($\frac{1}{e}$)]=(  )
A.-$\frac{1}{e}$B.-eC.eD.$\frac{1}{e}$

查看答案和解析>>

同步练习册答案