精英家教网 > 高中数学 > 题目详情
2.定义域为R的函数f(x)的图象关于直线x=1对称,当a∈[0,l]时,f(x)=x,且对任意x∈R只都有f(x+2)=-f(x),g(x)=$\left\{\begin{array}{l}f(x)(x≥0)\\-{log_{2013}}(-x)(x<0)\end{array}\right.$,则方程g(x)-g(-x)=0实数根的个数为(  )
A.1006B.1007C.2012D.2014

分析 由于函数f(x)的图象关于直线x=1对称,当x∈[0,1]时,f(x)=x,对任意x∈R都有f(x+2)=-f(x),可得函数在[0,+∞)上以4为周期,令-log2013(-x)=-1,则x=-2013,即可得出结论.

解答 解:由于函数f(x)的图象关于直线x=1对称,当x∈[0,1]时,f(x)=x,对任意x∈R都有f(x+2)=-f(x),可得函数在[0,+∞)上以4为周期,
令-log2013(-x)=-1,则x=-2013,
令g(x)-g(-x)=0则g(x)=g(-x),
∴方程g(x)-g(-x)=0实数根的个数为2012,
故选C.

点评 本题考查分段函数的图象和应用,考查函数的对称性、周期性及运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.阅读如图的程序框图,运行相应的程序,输出的结果是(  )
A.3B.$\frac{17}{7}$C.$\frac{7}{3}$D.$\frac{3}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(Ⅰ)求椭圆C的标准方程和长轴长;
(Ⅱ)设F为椭圆C的左焦点,P为直线x=-3上任意一点,过点F作直线PF的垂线交椭圆C于M,N,记d1,d2分别为点M和N到直线OP的距离,证明:d1=d2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.给出如下四个命题:①e${\;}^{\frac{2}{e}}$>2②ln2>$\frac{2}{3}$③π2<3π④$\frac{ln2}{2}$<$\frac{lnπ}{π}$,正确的命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),定义椭圆的“伴随圆”方程为x2+y2=a2+b2;若抛物线x2=4y的焦点与椭圆C的一个短轴重合,且椭圆C的离心率为$\frac{\sqrt{6}}{3}$.
(1)求椭圆C的方程和“伴随圆”E的方程;
(2)过“伴随圆”E上任意一点P作椭圆C的两条切线PA,PB,A,B为切点,延长PA与“伴随圆”E交于点Q,O为坐标原点.
①证明:PA⊥PB;
②若直线OP,OQ的斜率存在,设其分别为k1,k2,试判断k1k2是否为定值,若是,求出该值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图BB1,CC1,DD1均垂直于正方形AB1C1D1所在平面A、B、C、D四点共面.
(I)求证:四边形ABCD为平行四边形;
(II)若E,F分别为AB1,D1C1上的点,AB1=CC1=2BB1=4,AE=D1F=1.
(i)求证:CD丄平面DEF;
(ii)求二面角D-EC1-D1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数$f(x)=\frac{{6sinxcosx-4cosx{{sin}^3}x}}{{2\sqrt{2}+sin(2x+\frac{π}{4})+cos(2x+\frac{π}{4})}}$,则(  )
A.y=f(x)是偶函数,在$(0,\frac{π}{2})$上单调递增B.y=f(x)是奇函数,在$(0,\frac{π}{4})$上单调递增
C.y=f(x)是偶函数,在$(0,\frac{π}{2})$上单调递减D.y=f(x)是奇函数,在$(0,\frac{π}{4})$上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.四边形ABCD的四个顶点都在抛物线y=x2上,A,C关于y轴对称,BD平行于抛物一在点C处的切线.
(1)证明:AC平分∠BAD;
(2)若点A坐标为(-1,1),四边形ABCD的面积为4,求直线BD的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在长度为3的线段上随机取两点,将其分成三条线段,则恰有两条线段单位长大于1的概率为$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案