| A. | y=f(x)是偶函数,在$(0,\frac{π}{2})$上单调递增 | B. | y=f(x)是奇函数,在$(0,\frac{π}{4})$上单调递增 | ||
| C. | y=f(x)是偶函数,在$(0,\frac{π}{2})$上单调递减 | D. | y=f(x)是奇函数,在$(0,\frac{π}{4})$上单调递减 |
分析 利用三角函数恒等变换的应用化简函数解析式可得f(x)=$\frac{\sqrt{2}}{2}$sin2x,利用正弦函数的图象和性质可得单调性和奇偶性,从而得解.
解答 解:∵$f(x)=\frac{{6sinxcosx-4cosx{{sin}^3}x}}{{2\sqrt{2}+sin(2x+\frac{π}{4})+cos(2x+\frac{π}{4})}}$=$\frac{3sin2x-sin2x+sin2xcos2x}{\sqrt{2}cos2x+2\sqrt{2}}$=$\frac{sin2x(2+cos2x)}{\sqrt{2}(cos2x+2)}$=$\frac{\sqrt{2}}{2}$sin2x,
∴令2kπ-$\frac{π}{2}$≤2x≤2kπ-$\frac{π}{2}$,k∈Z,可得:kπ-$\frac{π}{4}$≤x≤kπ-$\frac{π}{4}$,k∈Z,可得f(x)在$(0,\frac{π}{4})$上单调递增,且利用正弦函数的图象和性质可得f(x)为奇函数.
故选:B.
点评 本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质,考查了转化思想和数形结合思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-e) | B. | (-∞,$\frac{1}{e}$) | C. | (0,$\frac{1}{e}$) | D. | (e,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | [11,13) | [13,15) | [15,17) | [17,19) | [19,21) | [21,23) |
| 频数 | 2 | 12 | 34 | 38 | 10 | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1006 | B. | 1007 | C. | 2012 | D. | 2014 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $\frac{{3\sqrt{5}}}{5}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com