精英家教网 > 高中数学 > 题目详情
14.设函数$f(x)=\frac{{6sinxcosx-4cosx{{sin}^3}x}}{{2\sqrt{2}+sin(2x+\frac{π}{4})+cos(2x+\frac{π}{4})}}$,则(  )
A.y=f(x)是偶函数,在$(0,\frac{π}{2})$上单调递增B.y=f(x)是奇函数,在$(0,\frac{π}{4})$上单调递增
C.y=f(x)是偶函数,在$(0,\frac{π}{2})$上单调递减D.y=f(x)是奇函数,在$(0,\frac{π}{4})$上单调递减

分析 利用三角函数恒等变换的应用化简函数解析式可得f(x)=$\frac{\sqrt{2}}{2}$sin2x,利用正弦函数的图象和性质可得单调性和奇偶性,从而得解.

解答 解:∵$f(x)=\frac{{6sinxcosx-4cosx{{sin}^3}x}}{{2\sqrt{2}+sin(2x+\frac{π}{4})+cos(2x+\frac{π}{4})}}$=$\frac{3sin2x-sin2x+sin2xcos2x}{\sqrt{2}cos2x+2\sqrt{2}}$=$\frac{sin2x(2+cos2x)}{\sqrt{2}(cos2x+2)}$=$\frac{\sqrt{2}}{2}$sin2x,
∴令2kπ-$\frac{π}{2}$≤2x≤2kπ-$\frac{π}{2}$,k∈Z,可得:kπ-$\frac{π}{4}$≤x≤kπ-$\frac{π}{4}$,k∈Z,可得f(x)在$(0,\frac{π}{4})$上单调递增,且利用正弦函数的图象和性质可得f(x)为奇函数.
故选:B.

点评 本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质,考查了转化思想和数形结合思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知曲线C:y=ex和直线l:ax+by=0,若直线l上有且只有两个关于y轴的对称点在曲线C上,则$\frac{b}{a}$的取值范围是(  )
A.(-∞,-e)B.(-∞,$\frac{1}{e}$)C.(0,$\frac{1}{e}$)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一企业从某条生产线上随机抽取100件产品,测量这些产品的某项技术指标值x,得到如下的频率分布表:
x[11,13)[13,15)[15,17)[17,19)[19,21)[21,23)
频数2123438104
(Ⅰ)作出样本的频率分布直方图,并估计该技术指标值x的平均数和众数;
(Ⅱ)若x<13或x≥21,则该产品不合格.现从不合格的产品中随机抽取2件,求抽取的2件产品中技术指标值小于13的产品恰有一件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义域为R的函数f(x)的图象关于直线x=1对称,当a∈[0,l]时,f(x)=x,且对任意x∈R只都有f(x+2)=-f(x),g(x)=$\left\{\begin{array}{l}f(x)(x≥0)\\-{log_{2013}}(-x)(x<0)\end{array}\right.$,则方程g(x)-g(-x)=0实数根的个数为(  )
A.1006B.1007C.2012D.2014

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.平面内定点财(1,0),定直线l:x=4,P为平面内动点,作PQ丄l,垂足为Q,且$|\overrightarrow{PQ}|=2|\overrightarrow{PM}|$.
(I)求动点P的轨迹方程;
(II )过点M与坐标轴不垂直的直线,交动点P的轨迹于点A、B,线段AB的垂直平分 线交x轴于点H,试判断$\frac{|HM|}{|AB|}$-是否为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.(文)已知是虚数单位,则$\frac{3+i}{1-i}$=(  )
A.1+2iB.2+iC.-1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等差数列{an}中,a2=6,a5=12.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}=\frac{4}{{{a_n}•{a_{n+1}}}}$,求数列{bn}的前n项和Sn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.双曲线$\frac{x^2}{5}-\frac{y^2}{4}=1$的离心率为(  )
A.4B.$\frac{{3\sqrt{5}}}{5}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.“|x-2|≤5”是“-3≤x≤7”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案