精英家教网 > 高中数学 > 题目详情
4.已知曲线C:y=ex和直线l:ax+by=0,若直线l上有且只有两个关于y轴的对称点在曲线C上,则$\frac{b}{a}$的取值范围是(  )
A.(-∞,-e)B.(-∞,$\frac{1}{e}$)C.(0,$\frac{1}{e}$)D.(e,+∞)

分析 设k=-$\frac{a}{b}$,求出l关于y轴的对称直线方程,把直线l上有且只有两个点关于y轴的对称点在曲线Γ:y=ex上,转化为直线y=-kx与y=ex有两个交点,然后求出过原点与曲线Γ:y=ex相切的直线的斜率得答案.

解答 解:设k=-$\frac{a}{b}$,直线l:y=kx关于y轴的对称直线方程为y=-kx,
要使直线l上有且只有两个点关于y轴的对称点在曲线Γ:y=ex上,
则直线y=-kx与y=ex有两个交点,
如图,设过原点的直线切曲线y=ex于P(m,em),
由y=ex,得y′=ex,∴y′=em
则切线方程为y-em=em(x-m),
把O(0,0)代入,可得m=1,
∴切线的斜率k=e1=e,
∴-k>e,则k<-e,
∴-$\frac{a}{b}$<-e,
∴$\frac{b}{a}$的取值范围是(0,$\frac{1}{e}$).
故选:C.

点评 本题考查利用导数研究过曲线上某点处的切线方程,考查数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.某单位实行休年假制度三年以来,50名职工休年假的次数进行的调查统计结果如表所示:
休假次数0123
人数5102015
根据表中信息解答以下问题:
(1)从该单位任选两名职工,求这两人休年假次数之和为4的概率;
(2)从该单位任选两名职工,用ξ表示这两人休年假次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{9+\sqrt{3}}{6}$πB.$\frac{6+\sqrt{3}}{6}$πC.$\frac{3+\sqrt{3}}{6}$πD.$\frac{12+\sqrt{3}}{6}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.阅读如图的程序框图,运行相应的程序,输出的结果是(  )
A.3B.$\frac{17}{7}$C.$\frac{7}{3}$D.$\frac{3}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A、B、C所对的边分别是a、b、c,已知$\sqrt{3}a=2csinA$且c<b. 
(Ⅰ)求角C的大小;
(Ⅱ)若b=4,延长AB至D,使BC=BD,且AD=5,求△ACD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设命题p:?x0∈(0,+∞),x0+$\frac{1}{{x}_{0}}$>3;命题q:?x∈(2,+∞),x2>2x,则下列命题为真的是(  )
A.p∧(¬q)B.(¬p)∧qC.p∧qD.(¬p)∨q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.正四面体ABCD中,E、F分别为边AB、BD的中点,则异面直线AF、CE所成角的余弦值为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(Ⅰ)求椭圆C的标准方程和长轴长;
(Ⅱ)设F为椭圆C的左焦点,P为直线x=-3上任意一点,过点F作直线PF的垂线交椭圆C于M,N,记d1,d2分别为点M和N到直线OP的距离,证明:d1=d2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数$f(x)=\frac{{6sinxcosx-4cosx{{sin}^3}x}}{{2\sqrt{2}+sin(2x+\frac{π}{4})+cos(2x+\frac{π}{4})}}$,则(  )
A.y=f(x)是偶函数,在$(0,\frac{π}{2})$上单调递增B.y=f(x)是奇函数,在$(0,\frac{π}{4})$上单调递增
C.y=f(x)是偶函数,在$(0,\frac{π}{2})$上单调递减D.y=f(x)是奇函数,在$(0,\frac{π}{4})$上单调递减

查看答案和解析>>

同步练习册答案