| A. | $\frac{\sqrt{2}}{3}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{6}}{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,由此能求出二面角B-A1C1-A的余弦值.
解答 解:
以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1的棱长为1,
则A(1,0,0),A1(1,0,1),B(1,1,0),C1(0,1,1),
$\overrightarrow{{A}_{1}{C}_{1}}$=(-1,1,0),$\overrightarrow{{A}_{1}A}$=(0,0,-1),$\overrightarrow{{A}_{1}B}$=(0,1,-1),
设平面A1C1A的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{{A}_{1}{C}_{1}}=-x+y=0}\\{\overrightarrow{n}•\overrightarrow{{A}_{1}A}=-z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,1,0),
设平面A1C1B的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{{A}_{1}{C}_{1}}=-a+b=0}\\{\overrightarrow{m}•\overrightarrow{{A}_{1}B}=b-c=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,1,1),
设二面角B-A1C1-A的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{\sqrt{2}•\sqrt{3}}$=$\frac{\sqrt{6}}{3}$.
∴二面角B-A1C1-A的余弦值为$\frac{\sqrt{6}}{3}$.
故选:C.
点评 本题考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
| 喜欢看足球比赛 | 不喜欢看足球比赛 | 总计 | |
| 男 | |||
| 女 | |||
| 总计 |
| P(K2≥k0) | 0.4 | 0.25 | 0.10 | 0.010 |
| k0 | 0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 成绩分组 | [75,90) | [90,105) | [105,120) | [120,135) | [135,150) |
| 频数 | 2 | 6 | 8 | 7 | b |
| 男生 | 女生 | 总计 | |
| 优秀 | |||
| 不优秀 | |||
| 总计 |
| P(K2≥k0) | 0.10 | 0.05 | 0.01 |
| K0 | 2.706 | 3.841 | 6,635 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(6+2\sqrt{2})π+12$ | B. | 8(π+1) | C. | 4(2π+1) | D. | $(12+2\sqrt{2})π$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com