精英家教网 > 高中数学 > 题目详情
2.若关于x的方程e2x+aex+1=0有解,则实数a的取值范围是(-∞,-2].

分析 可分离出a,转化为函数f(x)=$\frac{-{e}^{2x}-1}{{e}^{x}}$的值域问题,令ex=t,利用基本不等式和不等式的性质求值域即可.

解答 解:关于x的方程e2x+aex+1=0有解,可得a=$-\frac{{e}^{2x}+1}{{e}^{x}}$,令ex=t(t>0),
则$\frac{-{e}^{2x}-1}{{e}^{x}}$=-$\frac{{t}^{2}+1}{t}$=-(t+$\frac{1}{t}$)
因为t+$\frac{1}{t}$≥2,所以$\frac{-{e}^{2x}-1}{{e}^{x}}$≤-2,当且仅当x=0时取等号.
所以a的范围为(-∞,-2]
故答案为:(-∞,-2].

点评 本题考查方程有解问题、基本不等式求最值问题,同时考查转化思想和换元法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.《九章算术》卷第六《均输》中,有问题“今有竹九节,下三节容量四升,上四节容量三升.问中间二节欲均容,各多少?”其中“欲均容”的意思是:使容量变化均匀,即由下往上均匀变细.在这个问题中的中间两节容量和是(  )
A.$1\frac{61}{66}$升B.2升C.$2\frac{3}{22}$升D.3升

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数x,y满足$\left\{\begin{array}{l}x≥0\\ y≥0\\ \frac{x}{3}+\frac{y}{4}≤1\end{array}\right.$,则$\frac{y+1}{x+1}$的取值范围是(  )
A.$[{-\frac{1}{6},5}]$B.[1,5]C.$[{\frac{1}{4},5}]$D.[0,5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数$f(x)=(x-\frac{1}{x})sinx$(-π≤x≤π且x≠0)的图象是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知点A(-2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则|BF|=10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知△ABC中,角A,B,C所对的边依次为a,b,c,其中b=2.
(Ⅰ)若asin2B=$\sqrt{3}$bsinA,求B;
(Ⅱ)若a,b,c成等比数列,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设x,y∈R,则“x≠1或y≠1”是“xy≠1”的(  )
A.充分不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设$\overrightarrow{a}$,$\overrightarrow{b}$是平面上的两个单位向量,$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{3}{5}$.若m∈R,则|$\overrightarrow{a}$+m$\overrightarrow{b}$|的最小值是(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{4}{5}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=xlnx-$\frac{a}{2}{x^2}$-x+a(a∈R)在其定义域内有两个不同的极值点.
(1)求a的取值范围;
(2)记两个极值点分别为x1,x2,且x1<x2,已知λ>0,若不等式e1+λ<x1x2λ恒成立,求λ的取值范围.

查看答案和解析>>

同步练习册答案