精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求函数上的单调递增区间;

2)将函数的图象向左平移个单位长度,再将图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图象.求证:存在无穷多个互不相同的整数,使得.

【答案】1)单调递增区间为;(2)见解析.

【解析】

1)利用二倍角的降幂公式以及辅助角公式可将函数的解析式化简为,然后求出函数上的单调递增区间,与定义域取交集可得出答案;

2)利用三角函数图象变换得出,解出不等式的解集,可得知对中的任意一个,每个区间内至少有一个整数使得,从而得出结论.

1.

,解得

所以,函数上的单调递增区间为

,因此,函数上的单调递增区间为

(2)将函数的图象向左平移个单位长度,得到函数的图象,

再将图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图象,

对于中的任意一个,区间长度始终为,大于

每个区间至少含有一个整数,

因此,存在无穷多个互不相同的整数,使得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系已知一动圆经过点且在轴上截得的弦长为4,设动圆圆心的轨迹为曲线

1求曲线的方程

2过点作互相垂直的两条直线与曲线交于两点与曲线交于两点线段的中点分别为求证:直线过定点并求出定点的坐标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)当时,求证:

(2)若有三个零点时,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形所在的平面与直角梯形所在的平面成的二面角,.

1)求证:

2)在线段上求一点,使锐二面角的余弦值为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某学校的特长班有50名学生,其中有体育生20名,艺术生30名,在学校组织的一次体检中,该班所有学生进行了心率测试,心率全部介于50次/分到75次/分之间,现将数据分成五组,第一组[50,55),第二组[55,60),…,第五组[70,75],按上述分组方法得到的频率分布直方图如图所示.因为学习专业的原因,体育生常年进行系统的身体锻炼,艺术生则很少进行系统的身体锻炼,若前两组的学生中体育生有8名.

(1)根据频率分布直方图及题设数据完成下列2×2列联表.

心率小于60次/分

心率不小于60次/分

合计

体育生

20

艺术生

30

合计50

(2)根据(1)中表格数据计算可知,________(填“有”或“没有”)99.5%的把握认为“心率小于60次/分与常年进行系统的身体锻炼有关”.

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在的奇函数满足:①;②对任意均有;③对任意,均有.

1)求的值;

2)利用定义法证明上单调递减;

3)若对任意,恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在同一直角坐标系中,经过伸缩变换后,曲线C的方程变为.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线/的极坐标方程为.

1)求曲线C和直线l的直角坐标方程;

2)过点l的垂线l0CAB两点,点Ax轴上方,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在黄陵中学举行的数学知识竞赛中,将高二两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.

(1)求第二小组的频率;

(2)求这两个班参赛的学生人数是多少?

(3)这两个班参赛学生的成绩的中位数应落在第几小组内?(不必说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,离心率为.不过原点的直线与椭圆相交于两点,设直线,直线,直线的斜率分别为,且成等比数列.

(1)求的值;

(2)若点在椭圆上,满足的直线是否存在?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案