【题目】已知函数.
(1)求函数在上的单调递增区间;
(2)将函数的图象向左平移个单位长度,再将图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图象.求证:存在无穷多个互不相同的整数,使得.
【答案】(1)单调递增区间为;(2)见解析.
【解析】
(1)利用二倍角的降幂公式以及辅助角公式可将函数的解析式化简为,然后求出函数在上的单调递增区间,与定义域取交集可得出答案;
(2)利用三角函数图象变换得出,解出不等式的解集,可得知对中的任意一个,每个区间内至少有一个整数使得,从而得出结论.
(1).
令,解得,
所以,函数在上的单调递增区间为,
,因此,函数在上的单调递增区间为;
(2)将函数的图象向左平移个单位长度,得到函数的图象,
再将图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图象,
由,
对于中的任意一个,区间长度始终为,大于,
每个区间至少含有一个整数,
因此,存在无穷多个互不相同的整数,使得.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知一动圆经过点且在轴上截得的弦长为4,设动圆圆心的轨迹为曲线.
(1)求曲线的方程;
(2)过点作互相垂直的两条直线,,与曲线交于,两点与曲线交于,两点,线段,的中点分别为,,求证:直线过定点,并求出定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某学校的特长班有50名学生,其中有体育生20名,艺术生30名,在学校组织的一次体检中,该班所有学生进行了心率测试,心率全部介于50次/分到75次/分之间,现将数据分成五组,第一组[50,55),第二组[55,60),…,第五组[70,75],按上述分组方法得到的频率分布直方图如图所示.因为学习专业的原因,体育生常年进行系统的身体锻炼,艺术生则很少进行系统的身体锻炼,若前两组的学生中体育生有8名.
(1)根据频率分布直方图及题设数据完成下列2×2列联表.
心率小于60次/分 | 心率不小于60次/分 | 合计 | |
体育生 | 20 | ||
艺术生 | 30 | ||
合计50 |
(2)根据(1)中表格数据计算可知,________(填“有”或“没有”)99.5%的把握认为“心率小于60次/分与常年进行系统的身体锻炼有关”.
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在的奇函数满足:①;②对任意均有;③对任意,均有.
(1)求的值;
(2)利用定义法证明在上单调递减;
(3)若对任意,恒有,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在同一直角坐标系中,经过伸缩变换后,曲线C的方程变为.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线/的极坐标方程为.
(1)求曲线C和直线l的直角坐标方程;
(2)过点作l的垂线l0交C于A,B两点,点A在x轴上方,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在黄陵中学举行的数学知识竞赛中,将高二两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.
(1)求第二小组的频率;
(2)求这两个班参赛的学生人数是多少?
(3)这两个班参赛学生的成绩的中位数应落在第几小组内?(不必说明理由)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个焦点为,离心率为.不过原点的直线与椭圆相交于两点,设直线,直线,直线的斜率分别为,且成等比数列.
(1)求的值;
(2)若点在椭圆上,满足的直线是否存在?若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com