【题目】已知.
(1)当时,求证:;
(2)若有三个零点时,求的范围.
【答案】(1)证明见解析;(2).
【解析】分析:(1)令,,,利用导数可得在上单调递减,,从而可得结论; (2)有三个零点等价于有三个零点,当时,当时,可得是单调函数,至多有一个零点,不符合题意,当时,利用导数研究函数的单调性,根据单调性,结合函数图象可得的范围是.
详解:(1)证明:,
令,,,
,
在上单调递减,,
所以原命题成立.
(2)由 有三个零点可得
有三个零点,
,
①当时,恒成立,可得至多有一个零点,不符合题意;
②当时,恒成立,可得至多有一个零点,不符合题意;
③当时,记得两个零点为,,不妨设,且,
时,;时,;时,
观察可得,且,
当时,;单调递增,
所以有,即,
时,,单调递减,
时,单调递减,
由(1)知,,且,所以在上有一个零点,
由,且,所以在上有一个零点,
综上可知有三个零点,
即有三个零点,
所求的范围是.
科目:高中数学 来源: 题型:
【题目】为了解某养殖产品在某段时间内的生长情况,在该批产品中随机抽取了120件样本,测量其增长长度(单位:),经统计其增长长度均在区间内,将其按,,,,,分成6组,制成频率分布直方图,如图所示其中增长长度为及以上的产品为优质产品.
(1)求图中的值;
(2)已知这120件产品来自于,B两个试验区,部分数据如下列联表:
将联表补充完整,并判断是否有99.99%的把握认为优质产品与A,B两个试验区有关系,并说明理由;
下面的临界值表仅供参考:
(参考公式:,其中)
(3)以样本的频率代表产品的概率,从这批产品中随机抽取4件进行分析研究,计算抽取的这4件产品中含优质产品的件数的分布列和数学期望E(X).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.
月收入(单位百元) | ||||||
频数 | ||||||
赞成人数 |
(1)由以上统计数据填下面列联表,并问是否有的把握认为“月收入以元为分界点对“楼市限购令”的态度有差异;
月收入不低于百元的人数 | 月收入低于百元的人数 | 合计 | |
赞成 | ______________ | ______________ | ______________ |
不赞成 | ______________ | ______________ | ______________ |
合计 | ______________ | ______________ | ______________ |
(2)若对在、的被调查者中各随机选取两人进行追踪调查,记选中的人中不赞成“楼市限购令”的人数为,求随机变量的分布列及数学期望.
参考公式:,其中.
参考值表:
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求函数在上的单调递增区间;
(2)将函数的图象向左平移个单位长度,再将图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图象.求证:存在无穷多个互不相同的整数,使得.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】密码学是一种密写技术,即把信息写成代码的技术,将信息转换成保密语言的过程叫编码,有保密形式语言道出原始信息的过程称作译码.凯撒(公元前100-前44年)曾使用过一种密码系统,现称为凯撒暗码,按照这种系统的规则,原始信息的字母都用另一字母代替,后者在标准字母表中的位置比前者靠后三位(即暗码原码后移3个位置).如:标准字母表:,凯撒暗码表:,这样就将信息“JuliusCaesar”编码为“MxolxvFdhvdu”当你知道所得到的信息使用凯撒暗码编写成的密码时,译码工作很容易,只需把上述过程倒过来进行.当然现在的密写技术要复杂许多,这里我构造一种编码技术,请同学根据编码过程自己破译一下:信息字母与编码后暗语字母的对应法则是:暗码原码后移后得到的字母(为原码字母在语句中的位置即第几个字母,若移出字母表则在后面续一张字母表,其中[]为取整符号,空格不计数).那么若一句话的暗码为“JnrzjPKNI”,其原码是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com