【题目】为了解某养殖产品在某段时间内的生长情况,在该批产品中随机抽取了120件样本,测量其增长长度(单位:),经统计其增长长度均在区间内,将其按,,,,,分成6组,制成频率分布直方图,如图所示其中增长长度为及以上的产品为优质产品.
(1)求图中的值;
(2)已知这120件产品来自于,B两个试验区,部分数据如下列联表:
将联表补充完整,并判断是否有99.99%的把握认为优质产品与A,B两个试验区有关系,并说明理由;
下面的临界值表仅供参考:
(参考公式:,其中)
(3)以样本的频率代表产品的概率,从这批产品中随机抽取4件进行分析研究,计算抽取的这4件产品中含优质产品的件数的分布列和数学期望E(X).
【答案】(1)0.025;(2)见解析;(3)见解析
【解析】
(1)根据面积之和为1,列出关系式,解出a的值. (2)首先根据频率分布直方图中的数据计算A,B这两个试验区优质产品、非优质产品的总和,然后根据表格填入数据,再根据公式计算即可.(3)以样本频率代表概率,则属于二项分布,利用二项分布的概率公式计算分布列和数学期望即可.
(1)根据频率分布直方图数据,得:
,
解得.
(2)根据频率分布直方图得:
样本中优质产品有,
列联表如下表所示:
试验区 | 试验区 | 合计 | |
优质产品 | 10 | 20 | 30 |
非优质产品 | 60 | 30 | 90 |
合计 | 70 | 50 | 120 |
∴ ,
∴没有的把握认为优质产品与,两个试验区有关系.
(3)由已知从这批产品中随机抽取一件为优质产品的概率是,
随机抽取4件中含有优质产品的件数X的可能取值为0,1,2,3,4,且,
∴,
,
,
,
,
∴的分布列为:
0 | 1 | 2 | 3 | 4 | |
E(X)
科目:高中数学 来源: 题型:
【题目】某厂生产某产品的年固定成本为250万元,每生产千件,需另投入成本(万元),若年产量不足千件, 的图像是如图的抛物线,此时的解集为,且的最小值是,若年产量不小于千件, ,每千件商品售价为50万元,通过市场分析,该厂生产的商品能全部售完;
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中正确的个数是( )
①命题:“、,若,则”,用反证法证明时应假设或;
②若,则、中至少有一个大于;
③若、、、、成等比数列,则;
④命题:“,使得”的否定形式是:“,总有”.
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在的奇函数满足:①;②对任意均有;③对任意,均有.
(1)求的值;
(2)利用定义法证明在上单调递减;
(3)若对任意,恒有,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下表为函数部分自変量取值及其对应函数值,为了便于研究,相关函数值取非整数值时,取值精确到0.01.
0.61 | -0.59 | -0.56 | -0.35 | 0 | 0.26 | 0.42 | 1.57 | 3.27 | |
0.07 | 0.02 | -0.03 | -0.22 | 0 | 0.21 | 0.20 | -10.04 | -101.63 |
据表中数据,研究该函数的一些性质;
(1)判断函数的奇偶性,并证明;
(2)判断函数在区间[0.55,0.6]上是否存在零点,并说明理由;
(3)判断的正负,并证明函数在上是单调递减函数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com