精英家教网 > 高中数学 > 题目详情
当钝角△ABC的三边a,b,c是三个连续整数时,则△ABC外接圆的半径为
8
15
15
8
15
15
分析:由题意设出钝角三角形的三边长分别为x,x+1,x+2,可得出x+2所对的角为钝角,设为α,利用余弦定理表示出cosα,将设出的三边代入,根据cosα小于0,得出x的范围,在范围中找出整数x的值,确定出三角形的三边长,进而确定出cosα的值,利用同角三角函数间的基本关系求出sinα的值,利用正弦定理即可求出三角形ABC外接圆的半径.
解答:解:由题意得:钝角△ABC的三边分别为x,x+1,x+2,且x+2所对的角为钝角α,
∴由余弦定理得:cosα=
x2+(x+1)2-(x+2)2
2x(x+1)
=
x-3
2x
<0,即x<3,
∴x=1或x=2,
当x=1时,三角形三边分别为1,2,3,不能构成三角形,舍去;
当x=2时,三角形三边长分别为2,3,4,此时cosα=-
1
4

∴sinα=
1-cos2α
=
15
4

设△ABC外接圆的半径为R,根据正弦定理得:
4
15
4
=2R,
解得:R=
8
15
15

故答案为:
8
15
15
点评:此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握正弦、余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A,∠B,∠C所对的边分别是a,b,c.
(Ⅰ)用余弦定理证明:当∠C为钝角时,a2+b2<c2
(Ⅱ)当钝角△ABC的三边a,b,c是三个连续整数时,求△ABC外接圆的半径.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

当钝角△ABC的三边a,b,c是三个连续整数时,则△ABC外接圆的半径为______.

查看答案和解析>>

科目:高中数学 来源:江苏省期中题 题型:解答题

在△ABC中,∠A,∠B,∠C所对的边分别是a,b,c.
(Ⅰ)用余弦定理证明:当∠C为钝角时,a2+b2<c2
(Ⅱ)当钝角△ABC的三边a,b,c是三个连续整数时,求△ABC外接圆的半径.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省扬州中学高一(下)期中数学试卷(解析版) 题型:解答题

在△ABC中,∠A,∠B,∠C所对的边分别是a,b,c.
(Ⅰ)用余弦定理证明:当∠C为钝角时,a2+b2<c2
(Ⅱ)当钝角△ABC的三边a,b,c是三个连续整数时,求△ABC外接圆的半径.

查看答案和解析>>

同步练习册答案