精英家教网 > 高中数学 > 题目详情
12.使“a>b”成立的一个充分不必要条件是(  )
A.a>b+1B.$\frac{a}{b}$>1C.a2>b2D.a3>b3

分析 根据充分条件和必要条件的定义进行判断即可.

解答 解:A.若a>b+1,则a>b成立,即充分性成立,
反之若a>b,则a>b+1不一定成立,
即a>b+1是“a>b”成立的一个充分不必要条件,
B.当b<0时,由$\frac{a}{b}$>1得a<b,则a>b不成立,即$\frac{a}{b}$>1不是充分条件,不满足条件.
C.由a2>b2得a>b或a<-b,则a2>b2不是充分条件,不满足条件.
D.由a3>b3得a>b,则a3>b3是a>b成立的充要条件,不满足条件.
故选:A.

点评 本题主要考查充分条件和必要条件的判断,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知定义域为R的函数f(x)满足f(-x)=-f(x+2),且当x>1时,f(x)的导数f′(x)>0,如果x1+x2<2且(x1-1)(x2-1)<0,则f(x1)+f(x2)的值(  )
A.恒小于0B.恒大于0C.可能为0D.可正可负

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,AC=2,D为AC中点,∠A=∠CBD=2∠ABD,则△ABC的面积为$\frac{1+\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.用反证法证明“已知x>y,证明:x3>y3”假设的内容应是x3≤y3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow a$=($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),$\overrightarrow b$=(-$\sqrt{3}$,1),$\overrightarrow c$=$\overrightarrow a$+λ$\overrightarrow b$,则$\overrightarrow c$•$\overrightarrow a$等于(  )
A.λB.C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)是定义在R上的偶函数,且f(x)在[0,+∞)上单调递减,若f(m)>f(1-m),则实数m的取值范围是(-∞,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线C1的极坐标方程为ρ=8$\sqrt{2}cos(θ-\frac{3π}{4})$,曲线C2的参数方程为$\left\{\begin{array}{l}x=8cosθ\\ y=3sinθ\end{array}\right.(θ$为参数).
(Ⅰ)将曲线C1的极坐标方程化为直角坐标方程,将曲线C2的参数方程化为普通方程;
(Ⅱ)若P为C2上的动点,求点P到直线l:$\left\{\begin{array}{l}x=3+2t\\ y=-2+t\end{array}\right.(t$为参数)的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若非零向量$\overrightarrow a,\overrightarrow b$满足|${\overrightarrow a$+$\overrightarrow b}$|=|${\overrightarrow a$-$\overrightarrow b}$|,则$\overrightarrow a$与$\overrightarrow b$所成的夹角大小为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x,y满足条件$\left\{\begin{array}{l}{x+2y≥2}\\{x-y≤2}\\{0≤y≤3}\end{array}\right.$,则z=$\frac{1}{2}$x-y的最大值是1.

查看答案和解析>>

同步练习册答案