精英家教网 > 高中数学 > 题目详情
20.用反证法证明“已知x>y,证明:x3>y3”假设的内容应是x3≤y3

分析 由于用反证法证明命题时,应先假设命题的否定成立,而“x3>y3”的否定为:“x3≤y3”,由此得出结论.

解答 解:∵用反证法证明命题时,应先假设命题的否定成立,而“x3>y3”的否定为:“x3≤y3”,
故答案为:x3≤y3

点评 本题主要考查用命题的否定,反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.设数列{an}的前n项和为Sn,若Sn=$\frac{1}{8}$(an+2)2,则a3的所有可能取值的和为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设a∈R,函数f(x)=$\frac{x-a}{(x+a)^{2}}$.
(1)若函数f(x)在(0,f(0))处的切线与直线y=3x-2平行,求a的值;
(2)若对于定义域内的任意x1,总存在x2使得f(x2)<f(x1),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C所对的边分别为a,b,c,向量$\overrightarrow{m}$=($\sqrt{3}$cos$\frac{A}{2}$,sin$\frac{A}{2}$),$\overrightarrow{n}$=(-cos$\frac{B}{2}$,$\sqrt{3}$sin$\frac{B}{2}$),且满足$\overrightarrow{m}$•$\overrightarrow{n}$=-$\frac{\sqrt{3}}{2}$.
(Ⅱ)求角C的大小;
(Ⅱ)若△ABC的面积为$\frac{\sqrt{3}}{4}$,且a-b=2,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=$\frac{ax-b}{{{{(x-c)}^2}}}$的图象如图所示,则下列结论成立的是(  )
A.a>0,b>0,c>0B.a<0,b<0,c>0C.a>0,b>0,c<0D.a<0,b>0,c>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x∈R|-2<x<1},B={x∈R|x2-2x<0},那么A∩B=(  )
A.(-2,0)B.(-2,1)C.(0,2)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.使“a>b”成立的一个充分不必要条件是(  )
A.a>b+1B.$\frac{a}{b}$>1C.a2>b2D.a3>b3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)是R上的偶函数,在(-3,-2)上为减函数且对?x∈R都有f(2-x)=f(x),若A,B是钝角三角形ABC的两个锐角,则(  )
A.f(sinA)<f(cosB)B.f(sinA)>f(cosB)
C.f(sinA)=f(cosB)D.f(sinA)与与f(cosB)的大小关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,a:b:c=3:2:4,则sinC=(  )
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.$\frac{\sqrt{15}}{4}$D.-$\frac{\sqrt{15}}{4}$

查看答案和解析>>

同步练习册答案