| A. | △PF1F2的内切圆的圆心必在直线x=a上 | |
| B. | △PF1F2的内切圆的圆心必在直线x=b上 | |
| C. | △PF1F2的内切圆的圆心必在直线OP上 | |
| D. | △PF1F2的内切圆必通过点(b,0) |
分析 设△PF1F2的内切圆分别与PF1、PF2切于点A、B,与F1F2切于点M,则可知|PA|=|PB|,|F1A|=|F1M|,|F2B|=|F2M|,点P在双曲线右支上,根据双曲线的定义可得|PF1|-|PF2|=2a,因此|F1M|-|F2M|=2a,设M点坐标为(x,0),代入即可求得x,判断A,D正确.
解答 解:设△PF1F2的内切圆分别与PF1、PF2切于点A、B,与F1F2切于点M,
则|PA|=|PB|,|F1A|=|F1M|,|F2B|=|F2M|,
又点P在双曲线右支上,
所以|PF1|-|PF2|=2a,故|F1M|-|F2M|=2a,而|F1M|+|F2M|=2c,
设M点坐标为(x,0),
则由|F1M|-|F2M|=2a可得(x+c)-(c-x)=2a
解得x=a,显然内切圆的圆心与点M的连线垂直于x轴,
故D不正确.
故答案为A.
点评 本题主要考查了双曲线的简单性质.特别是灵活利用了双曲线的定义.
科目:高中数学 来源: 题型:选择题
| A. | 2.5 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “p且q”为真 | B. | “p或q”为假 | C. | p假q真 | D. | p真q假 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(sinA)<f(sinB) | B. | f(cosA)>f(cosB) | C. | f(sinA)<f(cosB) | D. | f(sinA)>f(cosB) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com