| A. | 实数k有最大值2 | B. | 实数k有最小值2 | C. | 实数k有最大值$\frac{2}{e}$ | D. | 实数k有最小值$\frac{2}{e}$ |
分析 问题转化为求k=$\frac{f(x)}{{e}^{x}}$的最大值,根据函数的单调性求出即可.
解答 解:令g(x)=0,得:k=$\frac{f(x)}{{e}^{x}}$,
∵${[\frac{f(x)}{{e}^{x}}]}^{′}$=$\frac{f′(x)-f(x)}{{e}^{x}}$,
∴x>0时,${[\frac{f(x)}{{e}^{x}}]}^{′}$<0,函数y=$\frac{f(x)}{{e}^{x}}$递减,
x<0时,${[\frac{f(x)}{{e}^{x}}]}^{′}$>0,函数y=$\frac{f(x)}{{e}^{x}}$递增,
∴函数y=$\frac{f(x)}{{e}^{x}}$有最大值是$\frac{f(0)}{{e}^{0}}$=2,
即k的最大值是2,
故选:A.
点评 本题考查了函数的单调性问题,考查导数的应用,是一道基础题.
科目:高中数学 来源: 题型:选择题
| A. | 最大值为2 | B. | 周期为π的奇函数 | ||
| C. | 关于点$(\frac{π}{8},0)$中心对称 | D. | 在$[\frac{3π}{8},\frac{7π}{8}]$上单调递减 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x+1)2+y2=1 | B. | (x-1)2+y2=1 | C. | (x+1)2+y2=2 | D. | (x-1)2+y2=2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,1) | B. | (-1,0) | C. | (0,1) | D. | [-1,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com