精英家教网 > 高中数学 > 题目详情
已知实数a,b满足a2+b2=1,设函数f(x)=x2-6x+5,则使f(a)≥f(b)得概率为(  )
A、
3
4
+
1
B、
1
2
+
1
π
C、
3
4
D、
1
2
考点:几何概型
专题:计算题,概率与统计
分析:函数f(x)=x2-6x+5,使f(a)≥f(b),则(a-b)(a+b-6)≥0,作出图象,即可得出结论.
解答: 解:函数f(x)=x2-6x+5,使f(a)≥f(b),则(a-b)(a+b-6)≥0,
如图所示,使f(a)≥f(b)得概率为
1
2

故选:D.
点评:本题主要考查了几何概型,简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

解不等式
(1)9x2+6x+1>0             
(2)x2-(a+
1
a
)+1<0(a≠0,a∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙O:x2+y2=1,点S(2,m)(m≠0)是直线l:x=2上一动点,⊙O与x轴的交点分别为A、B.连接SA交⊙O于点M,连接SB并延长交⊙O于点N,连接MB并延长交直线l于点T.
(1)证明:A,N,T三点共线;
(2)证明:直线MN必过一定点(其坐标与m无关).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(
x-1
x+1
2,(x≥1),f-1(x)是f(x)的反函数,记g(x)=
1
f-1(x)
+
x
+2.
(1)求f-1(x);
(2)判断f-1(x)的单调性;
(3)求g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

试求函数y=log 
1
5
(x2+2x+6)的定义域、值域、单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

若cosαcosβ=1,那么cos(α-β)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

画出函数y=2cos(
1
2
x-
π
4
),x∈R在长度为一个周期的闭区间的简图.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a2+b2+c2=1,
b+c
a
+
a+c
b
+
a+b
c
=-3,则a+b+c=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若一动点M到A(-4,0)的距离是它到B(2,0)的距离的2倍,则动点M的轨迹方程是
 

查看答案和解析>>

同步练习册答案