【题目】如图,设椭圆C: (a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.
(1)已知直线l的斜率为k,用a,b,k表示点P的坐标;
(2)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.
【答案】
(1)解:设直线l的方程为y=kx+m(k<0),由 ,消去y得
(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0.
由于直线l与椭圆C只有一个公共点P,故△=0,即b2﹣m2+a2k2=0,
此时点P的横坐标为﹣ ,代入y=kx+m得
点P的纵坐标为﹣k +m= ,
∴点P的坐标为(﹣ , ),
又点P在第一象限,故m>0,
故m= ,
故点P的坐标为P( , ).
(2)解:由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离
d= ,
整理得:d= ,
因为a2k2+ ≥2ab,所以 ≤ =a﹣b,当且仅当k2= 时等号成立.
所以,点P到直线l1的距离的最大值为a﹣b.
【解析】(1)设直线l的方程为y=kx+m(k<0),由 ,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,利用△=0,可求得在第一象限中点P的坐标;(2)由于直线l1过原点O且与直线l垂直,设直线l1的方程为x+ky=0,利用点到直线间的距离公式,可求得点P到直线l1的距离d= ,整理即可证得点P到直线l1的距离的最大值为a﹣b.
科目:高中数学 来源: 题型:
【题目】已知=(2﹣sin(2x+),﹣2),=(1,sin2x),f(x)= , (x∈[0,])
(1)求函数f(x)的值域;
(2)设△ABC的内角A,B,C的对边长分别为a,b,c,若f()=1,b=1,c= , 求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.
(1)确定a,b的值;
(2)若c=3,判断f(x)的单调性;
(3)若f(x)有极值,求c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】银川一中为研究学生的身体素质与课外体育锻炼时间的关系,抽取在校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集的数据分成,六组,并作出频率分布直方图(如图),将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.
课外体育不达标 | 课外体育达标 | 合计 | |
男 | |||
女 | |||
合计 |
(1)请根据直方图中的数据填写下面的列联表,并通过计算判断是否能在犯错误的概率不超过的前提下认为“课外体育达标”与性别有关?
(2)在这两组中采取分层抽样,抽取6人,再从这6名学生中随机抽取2人参加体育知识问卷调查,求这2人中一人来自“课外体育达标”和一人来自“课外体育不达标”的概率.
附参考公式与:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若在其定义域内存在实数,使得成立,则称有“※点”。
(1)判断函数在上是否有“※点”。并说明理由;
(2)若函数在上有“※点”,求正实数a的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过随机询问100名性别不同的高二学生是否爱吃零食,得到如下的列联表:
男 | 女 | 总计 | |
爱好 | 10 | 40 | 50 |
不爱好 | 20 | 30 | 50 |
总计 | 30 | 70 | 100 |
附表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
其中
则下列结论正确的是( )
A. 在犯错误的概率不超过0.05的前提下,认为“是否爱吃零食与性别有关”
B. 在犯错误的概率不超过0.05的前提下,认为“是否爱吃零食与性别无关”
C. 在犯错误的概率不超过0.025的前提下,认为“是否爱吃零食与性别有关”
D. 在犯错误的概率不超过0.025的前提下,认为“是否爱吃零食与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列五个结论:
集合2,3,4,5,,集合,若f:,则对应关系f是从集合A到集合B的映射;
函数的定义域为,则函数的定义域也是;
存在实数,使得成立;
是函数的对称轴方程;
曲线和直线的公共点个数为m,则m不可能为1;
其中正确的有______写出所有正确的序号
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com