精英家教网 > 高中数学 > 题目详情
已知直线l过点O(0.0)且与圆C:(x-2)2+y2=3有公共点,则直线l的斜率取值范围是
 
考点:直线的斜率
专题:直线与圆
分析:设直线方程为y=kx,联立
y=kx
(x-2)2+y2=3
消y并整理得(1+k2)x2-4x+1=0,由△≥0解不等式可得.
解答: 解:设直线l的斜率为k,则方程为y=kx,
联立
y=kx
(x-2)2+y2=3
消y并整理得(1+k2)x2-4x+1=0,
由题意可得△=(-4)2-4(1+k2)≥0,解得-
3
≤k≤
3

故答案为:-
3
≤k≤
3
点评:本题考查直线与圆的位置关系,涉及直线的斜率和一元二次不等式的解法,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l过点P(-6,3),且它在x轴上的截距是它在y轴上的截距的3倍,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右准线为x=
3
2
6
,离心率为
6
3
,A(-a,0),B(0,b),光线通过点C(-1,0)射到线段AB上的点T(端点除外),经过线段AB反射,其反射光线与椭圆交于点M.
(1)求椭圆的方程;
(2)若TC=TM,求T点横坐标m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱锥P-ABC中,PB⊥底面ABC于B,∠BCA=90°,PB=BA=CA=4
2
,点E、F分别是PC和AP的中点
(1)求证:侧面PAC⊥侧面PBC;
(2)求点B到侧面PAC的距离;
(3)求二面角A-BE-F的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设曲线C是动点P到定点F(2,0)的距离和到定直线x=
1
2
的距离之比为2的轨迹.   
(Ⅰ)求曲线C的方程;
(Ⅱ)已知存在直线l经过点M(1,m)(m∈R),交曲线C于E,F两点,使得M为EF的中点.
(i)求m的取值范围; 
(ii)求|EF|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一动圆P与圆M1:(x+4)2+y2=25和圆M2:(x-4)2+y2=1均外切(其中M1、M2分别为圆M1和圆M2的圆心).
(Ⅰ)求动圆圆心P的轨迹E的方程;
(Ⅱ)若过点M2的直线l与曲线E有两个交点A、B,求|AM1|•|BM1|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

二次函数y=-x2+6x+m的最大值是5m-3,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,三棱柱ABC-A1B1C1中,AB=AC=AA1=2,平面ABC1⊥平面A1ACC1
又∠AA1C1=∠BAC1=60°,AC1与A1C相交于点O.
(Ⅰ)求证:BO⊥平面A1ACC1
(Ⅱ)求AB1与平面A1ACC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若cosθ=1-log
1
2
x,求x的取值范围.

查看答案和解析>>

同步练习册答案