精英家教网 > 高中数学 > 题目详情
13.已知集合A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},A∩B={2}且A∪B=I,则(CIA)∪(CIB)=(  )
A.{-5,$\frac{1}{2}$}B.{-5,$\frac{1}{2}$,2}C.{-5,2}D.{2,$\frac{1}{2}$}

分析 根据A∩B={2}且A∪B=I,判断两个集合元素情况即可得到结论.

解答 解:∵A∩B={2},
∴2∈A,2∈B,
由2x=1,得x=$\frac{1}{2}$,即A={2,$\frac{1}{2}$},
由2+x=-3得x=-5,即B={-5,2},
则I=A∪B={-5,$\frac{1}{2}$,2},
则(CIA)∪(CIB)={-5}∪{$\frac{1}{2}$}={-5,$\frac{1}{2}$},
故选:A

点评 本题主要考查集合的基本运算,根据条件结合根与系数之间的关系求出集合A,B是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知72=49,73=343,74=2401,…,则72015的末两位数字为43.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.数列{an}是等差数列,已知a2+a5+a8=9,a3a5a7=-21 求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{3}$x3+2x2+ax+b,g(x)=ex(cx+d),且函数f(x)的导函数为f′(x),若曲线f(x)和g(x)都过点A(0,2),且在点A处有相同的切线y=4x+2.
(Ⅰ)求a,b,c,d的值;
(Ⅱ)若x≥-2时,mg(x)≥f′(x)-2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知命题p:函数f(x)=lg(ax2-x+$\frac{1}{16}$a)的定义域为R;命题q:集合A={x|x2+(a+2)x+1=0},B={x|x>0},且A∩B=∅.若“p或q”为真,“p且q”为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知,如图,已知PA和PB是⊙O的两条切线,PCD是⊙O的割线,弦AE∥PD,EB交CD于点F.求证:
(1)P,F,O,B四点共圆;
(2)CF=FD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合M={x|x2-4x+3<0},N={x|0<x<2},则M∩(∁RN)=(  )
A.(2,3)B.[2,3)C.(-3,-1)D.(-1,0)∪[2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,AB是圆O的直径,P是AB延长线上的一点,过P作圆O的切线,切点为C,PC=$2\sqrt{3}$,若∠CAB=30°,则圆O的直径AB等于(  )
A.2B.4C.6D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥P-ABCD中,底面ABCD是梯形,PA⊥底面ABCD,其中BA⊥AD,AD∥BC,AC与BD交于点O,M是AB边上的点,且$BM=\frac{1}{3}BA$,已知PA=AD=4,AB=3,BC=2.
(Ⅰ)求平面PAD与平面PMC所成锐二面角的正切值;
(Ⅱ)已知N是PM上一点,且ON∥平面PCD,求$\frac{PM}{PN}$的值.

查看答案和解析>>

同步练习册答案