精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
设f(x)是定义在[-1,1]上的奇函数,对于任意的 当时,都

(1)若函数g(x)=f(x-c)和h(x)=f(x-c2)的定义域的交集是空集,求c的取值范围;
(2)判断函数f(x)在[-1,1]上的单调性,并用定义证明。

(1){x|c<-1或c>2}
(2)增函数

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(12分)已知△ABC是边长为2的正三角形,如图,P,Q依次是AB,AC边上的点,且线段PQ将△ABC分成面积相等的两部分,设AP=x,AQ=t,PQ=y,求:

(1)t关于x的函数关系式;
(2)y关于x的函数关系式;
(3)y的最小值和最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
设函数的定义域为R,当x<0时,>1,且对任意的实数xyR,有.
(1)求,判断并证明函数的单调性;
(2)数列满足,且
①求通项公式;
②当时,不等式对不小于2的正整数
恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数对任意,都有
> 0时,< 0,
(1)求;  
(2)求证:是奇函数;
(3)请写出一个符合条件的函数;
(4)证明在R上是减函数,并求当时,的最大值和最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数,(x>0).
(1)当0<a<b,且f(a)=f(b)时,求的值 ;   
(2)是否存在实数aba<b),使得函数y=f(x)的定义域、值域都是[ab],若存在,求出ab的值,若不存在,请说明理由.
(3)若存在实数aba<b),使得函数y=f(x)的定义域为 [ab]时,值域为 [mamb],(m≠0),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某小区要建一座八边形的休闲小区,它的主体造型的平面图是由二个相同的矩形

构成的面积为的十字型地域,计划在正方形上建一座“观景花坛”,
造价为元/,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为
元/,再在四个空角(如等)上铺草坪,造价为元/.
(1)设总造价为元,长为,试建立的函数关系;
(2)当为何值时,最小?并求这个最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知二次函数的导函数为,且>0,的图象与x
轴恰有一个交点,则的最小值为 (   )

A.3 B. C.2 D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为偶函数,且其图像上相邻的一个最高点和最低点之间的距离为
(1)求函数f(x)的解析式;
(2)若  的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数论函数的奇偶性,并说明理由.

查看答案和解析>>

同步练习册答案