精英家教网 > 高中数学 > 题目详情
20.求值:$\frac{1+cos20°}{2sin20°}$-sin10°(cot5°-tan5°)

分析 由条件利用同角三角函数的基本关系、倍角公式,把要求的式子化为$\frac{cos10°}{2sin10°}$-2cos10°,通分后利用两角差的正弦公式展开合并、约分得到结果.

解答 解:$\frac{1+cos20°}{2sin20°}$-sin10°(cot5°-tan5°)=$\frac{1+{2cos}^{2}10°-1}{4sin10°cos10°}$-sin10°•($\frac{cos5°}{sin5°}$-$\frac{sin5°}{cos5°}$)=$\frac{1}{2}$•$\frac{{2cos}^{2}10°}{2sin10°cos10°}$-sin10°•$\frac{cos10°}{\frac{1}{2}sin10°}$
=$\frac{1}{2}$•$\frac{cos10°}{sin10°}$-2cos10°=$\frac{cos10°-4sin10°cos10°}{2sin10°}$=$\frac{cos10°-2sin(30°-10°)}{2sin10°}$=$\frac{cos10°-2sin30°cos10°+2cos30°sin10°}{2sin10°}$
=$\frac{\sqrt{3}•sin10°}{2sin10°}$=$\frac{\sqrt{3}}{2}$.

点评 本题主要考查同角三角函数的基本关系、诱导公式、两角差的正弦公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.四面体ABCD中,BD=$\sqrt{2}$,AB=AD=CB=CD=AC=1,求证:面ABD⊥面BCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求复数z=$\frac{{i}^{7}}{(\frac{\sqrt{3}}{2}-\frac{1}{2}i)^{2}•(1+i)^{4}}$的模长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若在曲线y=a2x+x+1(a>0,且a≠1)上的点(0,m)处的切线与直线mx-y+1=0平行,则m+a=(  )
A.1+eB.1+$\sqrt{e}$C.2+eD.2+$\sqrt{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,A=60°,a=$\sqrt{3}$.
(1)求△ABC面积的最大值;
(2)求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.由图所示的函数图象,求y=Asin(ωx+φ)(|φ|<π)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,a=1,c=$\sqrt{3}$,A=30°,则C=60°或120°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点F向其一条渐近线作垂线l,垂足为A,l与另一条渐近线交于B点,若$\overrightarrow{FB}$=3$\overrightarrow{FA}$,则双曲线的离心率为(  )
A.$\frac{\sqrt{6}}{3}$B.2C.$\frac{\sqrt{6}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.双曲线x2-4y2=4的渐近线方程是(  )
A.y=±$\frac{1}{4}$xB.y=±$\frac{1}{2}$xC.y=±4xD.y=±2x

查看答案和解析>>

同步练习册答案