分析 利用正弦定理得出b=2sinB,c=2sinC=2sin(120°-B)=$\sqrt{3}$cosB+sinB,分别代入面积公式和周长公式化简,利用正弦函数的图象与性质和B的范围求出最值即可.
解答 解:(1)在△ABC中,由正弦定理得$\frac{b}{sinB}=\frac{c}{sinC}=\frac{a}{sinA}$=2,
∴b=2sinB,c=2sinC,
∴S△ABC=$\frac{1}{2}bcsinA$=$\sqrt{3}$sinBsinC=$\sqrt{3}$sinBsin(120°-B)=$\frac{3}{2}$sinBcosB+$\frac{\sqrt{3}}{2}$sin2B
=$\frac{3}{4}sin2B$-$\frac{\sqrt{3}}{4}$cos2B+$\frac{\sqrt{3}}{4}$=$\frac{1}{2}$sin(2B-60°)+$\frac{\sqrt{3}}{4}$.
∵0°<B<120°,
∴-60°<2B-60°<180°,
∴当2B-60°=90°时,S△ABC取得最大值$\frac{1}{2}+\frac{\sqrt{3}}{4}$=$\frac{2+\sqrt{3}}{4}$.
(2)a+b+c=$\sqrt{3}$+2sinB+2sinC=$\sqrt{3}+2$sinB+2sin(120°-B)
=3sinB+$\sqrt{3}$cosB+$\sqrt{3}$=2$\sqrt{3}$sin(B+30°)+$\sqrt{3}$
∵0°<B<120°,
∴30°<B+30°<150°,
∴当B+30°=90°时,a+b+c取得最大值3$\sqrt{3}$.
当B+30°=30°或150°时,a+b+c取得最小值2$\sqrt{3}$.
∴△ABC的周长的取值范围是(2$\sqrt{3}$,3$\sqrt{3}$].
点评 本题考查了正弦定理,三角函数的恒等变换,正弦函数的 图象与性质,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{4}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{2}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{2}}{4}$ | C. | 2$\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com