精英家教网 > 高中数学 > 题目详情
5.设有白球与黑球各4个,从中任取4个放入甲盒,余下的4个放入乙盒,然后分别在两盒中各任取1个球,颜色正好相同,试问放入甲盒的4个球中有几个白球的概率最大?并求出此概率值.

分析 A表示“从甲盒、乙盒中各取1球颜色相同”,Bi表示“甲盒中有i只球”,i=0,1,2,3,4,先分别求出P(Bi),再由全概率公式求出P(A),然后由贝叶斯公式分别求出P(B1|A),P(B2|A),P(B3|A),从而得到放入甲盒中,2只白球的概率最大.

解答 解:A表示“从甲盒、乙盒中各取1球颜色相同”,
Bi表示“甲盒中有i只球”,i=0,1,2,3,4,由题意知A?$\sum_{i=1}^{3}{B}_{i}$,
P(B1)$\frac{{C}_{4}^{1}{C}_{4}^{3}}{{C}_{8}^{4}}$=$\frac{8}{35}$,P(A|B1)=$\frac{1}{4}×\frac{3}{4}+\frac{3}{4}×\frac{1}{4}=\frac{3}{8}$,
P(B2)=$\frac{{C}_{4}^{2}{C}_{4}^{2}}{{C}_{8}^{4}}$=$\frac{18}{35}$,P(A|B2)=$\frac{2}{4}×\frac{2}{4}+\frac{2}{4}×\frac{2}{4}$=$\frac{4}{8}$,
P(B3)=$\frac{{C}_{4}^{3}{C}_{4}^{1}}{{C}_{8}^{4}}$=$\frac{8}{35}$,P(A|B3)=$\frac{3}{4}×\frac{1}{4}+\frac{1}{4}×\frac{3}{4}$=$\frac{3}{8}$,
由全概率公式得:P(A)=$\sum_{k=1}^{3}P({B}_{k})P(A|{B}_{k})$=$\frac{8}{35}×\frac{3}{8}+\frac{18}{35}×\frac{4}{8}+\frac{8}{35}×\frac{3}{8}$=$\frac{3}{7}$.
由贝叶斯公式,得P(B1|A)=$\frac{P({B}_{1})P(A{|B}_{1})}{P(A)}$=$\frac{1}{5}$,
P(B2|A)=$\frac{P({B}_{2})P(A|{B}_{2})}{P(A)}$=$\frac{3}{5}$,
P(B3|A)=$\frac{P({B}_{3})P(A|{B}_{3})}{P(A)}$=$\frac{1}{5}$.
∴放入甲盒中,2只白球的概率最大.

点评 本题考查概率的求法,是中档题,解题时要认真审题,注意条件概率、全概率公式、贝叶斯公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.命题“若x>1,则x>a”是真命题,则实数a的取值范围是(  )
A.a>1B.a<1C.a≥1D.a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在($\frac{\sqrt{x}}{b}$+$\frac{b}{\root{3}{x}}$)18的展开式中,第10项是中间项,中间项是${C}_{18}^{9}$•${x}^{\frac{3}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的离心率是$\frac{\sqrt{3}}{2}$,点E($\sqrt{3}$,$\frac{1}{2}$)在椭圆上,设点A1,B1分别是椭圆的右顶点和上顶点,过点A1,B1引椭圆C的两条弦A1E、B1F.
(Ⅰ)求椭圆C的方程;
(II)若直线A1E与B1F的斜率是互为相反数.
(i)直线EF的斜率是否为定值?若是求出该定值,若不是,说明理由;
(ii)设△A1EF、△B1EF的面积分别为S1和S2,求S1+S2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)长轴两端点为A、B、P为C上异于顶点的点.满足AP与BP的斜率之积为-$\frac{1}{2}$.
(1)求椭圆C的离心率;
(2)设E、F是椭圆C上两点,线段EF的垂直平分线与x轴交于点G(x0,0),求$\frac{{x}_{0}}{a}$的取值范围;
(3)设F1,F2分别是椭圆C的左右焦点,直线PF1与椭圆C交于点P1,直线PF2与椭圆C交于点P2,$\overrightarrow{P{F}_{1}}$=λ1$\overrightarrow{{F}_{1}{P}_{1}}$,$\overrightarrow{P{F}_{2}}$=λ2$\overrightarrow{{F}_{2}{P}_{2}}$,试判断λ12是否为定值?若是定值,求出该定值并证明;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.四面体ABCD中,BD=$\sqrt{2}$,AB=AD=CB=CD=AC=1,求证:面ABD⊥面BCD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=$\frac{2x-1}{x-1}$,若函数g(x)=2x2,则方程g(x)=f(x)的实根个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.$\frac{tan45°-cot15°}{tan45°+cot15°}$的值等于-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,A=60°,a=$\sqrt{3}$.
(1)求△ABC面积的最大值;
(2)求△ABC周长的取值范围.

查看答案和解析>>

同步练习册答案