精英家教网 > 高中数学 > 题目详情

【题目】随着我国经济的发展,居民的储蓄存款逐年增长,设某地区城乡居民人民币储蓄存款(单位:亿元)的数据如下:

(1)求关于的线性回归方程;

(2)2018年城乡居民储蓄存款前五名中,有三男和两女.现从这5人中随机选出2人参加某访谈节目,求选中的2人性别不同的概率.

附:回归直线的斜率和截距的最小二乘估计公式分别为: .

【答案】(1) .(2) .

【解析】

(1)由题意利用线性回归方程的系数公式求得的值即可确定线性回归方程;

(2)由题意列出所有的基本事件个数,然后找到满足题意的事件个数,最后利用古典概型计算公式可得相应的概率值.

1

∴所求回归方程为:

2)设代表三男,代表两女,从5人中任选2人的基本事件为

共有10种,选中的2人性别不同的事件为

共有6种,故所求概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的四个顶点围成的菱形的面积为,椭圆的一个焦点为圆的圆心.

(1)求椭圆的方程;

(2)MN为椭圆上的两个动点,直线OMON的斜率分别为,当时,△MON的面积是否为定值?若为定值,求出此定值;若不为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)判断并证明的奇偶性.

2)证明内单调递减.

3,若对任意的都有,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点与抛物线的焦点相同,A为椭圆C的右顶点,以A为圆心的圆与直线相交于P, 两点,且

(Ⅰ)求椭圆C的标准方程和圆A的方程;

(Ⅱ)不过原点的直线与椭圆C交于M、N两点,已知OM,直线,ON的斜率成等比数列,记以OM、ON为直径的圆的面积分别为S1S2,试探究的值是否为定值,若是,求出此值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个口袋内有个不同的红球,个不同的白球,

(1)从中任取个球,红球的个数不比白球少的取法有多少种?

(2)若取一个红球记分,取一个白球记分,从中任取个球,使总分不少于分的取法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校举行演讲比赛,10位评委对两位选手的评分如下:

7.5 7.5 7.8 7.8 8.0 8.0 8.2 8.3 8.4 9.9

7.5 7.8 7.8 7.8 8.0 8.0 8.3 8.3 8.5 8.5

选手的最终得分为去掉一个最低分和一个最高分之后,剩下8个评分的平均数.那么,这两个选手的最后得分是多少?若直接用10位评委评分的平均数作为选手的得分,两位选手的排名有变化吗?你认为哪种评分办法更好?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n值为 (参考数据:)

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过双曲线的左焦点作圆的切线,切点为,延长交抛物线于点,若是线段的中点,则双曲线的离心率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据统计ABO血型具有民族和地区差异.在我国H省调查了30488人,四种血型的人数如下:

血型

A

B

O

AB

人数/

7704

10765

8970

3049

频率

1)计算H省各种血型的频率并填表(精确到0.001);

2)如果从H省任意调查一个人的血型,那么他是O型血的概率大约是多少?

查看答案和解析>>

同步练习册答案