精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)求函数的单调区间;

2)设图象在点处的切线与的图象相切,求的值;

3)若函数存在两个极值点,且,求的最大值.

【答案】1的单调递减区间为,单调递增区间为23

【解析】

1)先对求导,令导数大于0,求出在定义域内的单调递增区间,导数小于0,在定义域内求出函数的单调递减区间;

2)由题意求出处的切线方程,与函数联立得关于的二次方程,用判别式等于求出的值;

3)求的导数,令,由题意得方程有两个不等的实数根,求出两根之和及两根之积,且求出函数的单调区间,求出的表达式用一个自变量表示,再构造函数,求导求出的最大值.

(1)的定义域为

,有,由,有

的单调递减区间为,单调递增区间为

(2)由(1)及题意,易得图象在点处的切线斜率为

则该切线方程为

联立,消去整理得:

解得

(3)∵

由(1)知函数的两个极值点满足

不妨设,则上是减函数,

,则

,即,解得

,∴

,则

上为增函数,

,即

的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是菱形,是矩形,的中点.

1)平面平面

2)在线段上是否存在点,使二面角的大小为?若存在,求出的长度;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:极坐标与参数方程]

在直角坐标系中,曲线的参数方程为是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的直角坐标方程;

(2)若射线 与曲线交于两点,与曲线交于两点,求取最大值时的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端.某种植户对一块地的个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为,且每粒种子是否发芽相互独立.对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种.

(1)当取何值时,有3个坑要补播种的概率最大?最大概率为多少?

(2)当时,用表示要补播种的坑的个数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,超过的部分,每超出(不足,按计算)需要再收费5.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).

1)求这60天每天包裹数量的平均值和中位数;

2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.已知公司前台有工作人员3人,每人每天工资100元,以样本估计总体,试估计该公司每天的利润有多少元?

3)小明打算将四件礼物随机分成两个包裹寄出,且每个包裹重量都不超过,求他支付的快递费为45元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图甲是某商店2018年(按360天计算)的日盈利额(单位:万元)的统计图.

(1)请计算出该商店2018年日盈利额的平均值(精确到0.1,单位:万元):

(2)为了刺激消费者,该商店于2019年1月举行有奖促销活动,顾客凡购买一定金额的高品后均可参加抽奖.随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店对前5天抽奖活动的人数进行统计如下表:(表示第天参加抽奖活动的人数)

1

2

3

4

5

50

60

70

80

100

经过进一步统计分析,发现具有线性相关关系.

(ⅰ)根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(ⅱ)该商店采取转盘方式进行抽奖(如图乙),其中转盘是个八等分的圆.每位顾客最多两次抽奖机会,若第一次抽到奖,则抽奖终止,若第一次未抽到奖,则再提供一次抽奖机会.抽到一等奖的奖品价值128元,抽到二等奖的奖品价值32元.若该商店此次抽奖活动持续7天,试估计该商店在此次抽奖活动结束时共送出价值为多少元的奖品(精确到0.1,单位:万元)?

(3)用(1)中的2018年日盈利额的平均值去估计当月(共31天)每天的日盈利额.若商店每天的固定支出约为1000元,促销活动日的日盈利额比平常增加20%,则该商店当月的纯利润约为多少万元?(精确到0.1,纯利润=盈利额-固定支出-抽奖总奖金数)

参考公式及数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(1)若上递增,求的最大值;

(2)若,存在,使得对任意,都有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列的前项和为,对任意,点都在函数的图象上.

1)求数列的通项公式;

2)若数列,求数列的前项和

3)已知数列满足,若对任意,存在使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知 ,且的中点,.

(1)求证:

(2)求证:平面平面

(3)求与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案