分析 (1)连接AC.在△ABC中,BC2=AB2+AC2,AB⊥AC.由AB∥CD,可得AC⊥CD. 利用线面垂直的性质可得PA⊥CD.即可证明.
(2)由于点M是线段PD的中点,可得点P,M到底面ABCD的距离之比为2:1,而S△BNC:S△ANC=$\frac{BN}{NA}$,即可得出体积之比.
解答 (1)证明:连接AC.![]()
∵在△ABC中,
AB=AC=2,BC=2$\sqrt{2}$,
∴BC2=AB2+AC2,
∴AB⊥AC.
∵AB∥CD,
∴AC⊥CD.
又∵PA⊥底面ABCD,
∴PA⊥CD.
∵AC∩PA=A,
∴CD⊥平面PAC.
(2)解:∵点M是线段PD的中点,
∴点P,M到底面ABCD的距离之比为2:1,
S△BNC:S△ANC=$\frac{BN}{NA}$,
∴$\frac{{V}_{N-PBC}}{{V}_{N-AMC}}$=$\frac{{V}_{P-BNC}}{{V}_{M-ANC}}$=$\frac{2}{1}$×$\frac{{S}_{△BNC}}{{S}_{△ANC}}$=$\frac{2BN}{NA}$=$\frac{3}{2}$,
∴$\frac{AN}{NB}$=$\frac{4}{3}$.
点评 本题考查了线面垂直的判定与性质定理、勾股定理的逆定理、三角形面积之比、三棱锥的体积之比、平行四边形的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 等边三角形 | B. | 直角三角形 | C. | 等腰三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x=$\frac{π}{2}$+1 | B. | x=$\frac{π}{2}$ | C. | x=π+1 | D. | x=π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com