分析 由对称性可知,动点P轨迹一定是圆心在原点的圆,求出|OP|即可得到点P的轨迹方程,再由两点的距离公式,化简整理可得λ=$\frac{|PO|}{|PC|}$=$\frac{2}{\sqrt{13-3m}}$,由-4≤m≤4,即可得到所求范围.
解答 解:由题意可得,A,O,B,P四点共圆,且圆的直径为OP,
∵∠AOB=120°,PA,PB为圆的切线,
∴∠AOP=60°,
∵|OA|=2,∠OAP=90°,
∴|OP|=4.
∴点P的轨迹方程为x2+y2=16,
设P的坐标为(m,n),则m2+n2=16,且-4≤m≤4,
则|PO|=$\sqrt{{m}^{2}+{n}^{2}}$=4,|PC|=$\sqrt{(m-6)^{2}+{n}^{2}}$=$\sqrt{52-12m}$
由题意可得λ=$\frac{|PO|}{|PC|}$=$\frac{2}{\sqrt{13-3m}}$,
由-4≤m≤4,可得λ∈[$\frac{2}{5}$,2].
故答案为:[$\frac{2}{5}$,2].
点评 本题考查直线和圆的位置关系,主要考查直线和圆相切的条件,以及圆的性质和两点的距离公式的运用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$,$\frac{1}{2}$ | B. | $\frac{1}{2}$,1 | C. | $\frac{1}{2}$,2 | D. | 1,$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}π}{2}$+2 | B. | $\frac{\sqrt{5}+1}{2}π+\sqrt{3}$ | C. | $\frac{\sqrt{5}π}{2}+\sqrt{3}$ | D. | $\frac{\sqrt{5}+1}{2}π+2$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | -$\frac{3}{4}$ | D. | -$\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com