精英家教网 > 高中数学 > 题目详情
6.在△ABC中,若cosA=$\frac{sinC}{2sinB}$,则△ABC一定是(  )
A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形

分析 首先把正弦定理及余弦定理代入题中的已知关系式进行化简即可得到结果.

解答 解:根据正弦定理:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R$ (1)
余弦定理:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$(2)
把(1)(2)代入cosA=$\frac{sinC}{2sinB}$,得到:$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{c}{2b}$化简得:
(a+b)(b-a)=0
∴a=b
此△ABC一定是等腰三角形.
故选:C

点评 本题主要考查了正弦定理及余弦定理,及相关的化简问题,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若函数g(x)=f(x)sinx为R上的偶函数,且x∈(-∞,0]时,f(x)=ex+2x2+a-1,则f(x)在(1,f(1))处的切线方程为y=(e-1-4)x-2e-1+3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列四种说法中,
①命题“存在x∈R,x2-x>0”的否定是“对于任意x∈R,x2-x<0”;
②命题“p且q为真”是“p或q为真”的必要不充分条件;
③已知数据x1,x2,…,xn的平均数$\overline{x}$=5,方差S2=4,则数据2x1+1,2x2+1,…2xn+1的平均数和方差分别为11和16;
④已知向量$\overrightarrow{a}$=(3,-4),$\overrightarrow{b}$=(2,1),则向量$\overrightarrow{a}$在向量$\overrightarrow{b}$方向上的投影是$\frac{2}{5}$;
⑤f(x)=x3+ax2+bx+a2在x=1处有极小值10,则a+b=0或a+b=7.
说法正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.把函数y=sin(x+$\frac{π}{3}$)图象上所有点向右平移$\frac{π}{3}$个单位,再将所得图象的横坐标变为原来的$\frac{1}{2}$倍(纵坐标不变),得图象的解析式是y=sin(ωx+φ)(ω>0,|φ|<π),则(  )
A.ω=$\frac{1}{2}$,φ=-$\frac{π}{3}$B.ω=2,φ=$\frac{π}{3}$C.ω=2,φ=0D.ω=2,φ=$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.过点A(4,y),B(2,-3)的直线的倾斜角为135°,则y等于(  )
A.1B.-1C.5D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=log2(2x+1)+${(x-2)}^{\frac{1}{2}}$的定义域是(  )
A.(-∞,2)B.(-$\frac{1}{2}$,+∞)C.[2,+∞)D.(-$\frac{1}{2}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一个等差数列共有10项,其偶数项之和是15,奇数项之和是12.5,则它的首项和公差分别为(  )
A.$\frac{1}{2}$,$\frac{1}{2}$B.$\frac{1}{2}$,1C.$\frac{1}{2}$,2D.1,$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知A={a+2,(a+1)2,a2+3a+3},若1∈A,则实数a构成的集合B的元素个数是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,PA⊥底面ABCD,M是棱PD的中点,且PA=AB=AC=2,BC=2$\sqrt{2}$. 
(1)求证:CD⊥平面PAC;
(2)如果N是棱AB上一点,若VN-PBC:VN-AMC=3:2,求$\frac{AN}{NB}$的值.

查看答案和解析>>

同步练习册答案