精英家教网 > 高中数学 > 题目详情
4.下列命题中,错误命题的序号有(2)(3).
(1)“a=-1”是“函数f(x)=x2+|x+a+1|(x∈R)为偶函数”的必要条件;
(2)“直线l垂直平面α内无数条直线”是“直线l垂直平面α”的充分条件;
(3)若xy=0,则|x|+|y|=0;
(4)若p:?x∈R,x2+2x+2≤0,则¬p:?x∈R,x2+2x+2>0.

分析 (1)根据充分条件和必要条件的定义进行判断.
(2)根据线面垂直的定义进行判断.
(3)根据绝对值的性质进行判断.
(4)根据含有量词的命题的否定进行判断.

解答 解:(1)若“函数f(x)=x2+|x+a+1|(x∈R)为偶函数”,
则f(-x)=f(x),
即x2+|x+a+1|=x2+|-x+a+1|,
则|x+a+1|=|x-(a+1)|,
平方得x2+2(a+1)x+(a+1)2=x2-2(a+1)x+(a+1)2
即2(a+1)x=-2(a+1)x,
则4(a+1)=0,即a=-1,
则“a=-1”是“函数f(x)=x2+|x+a+1|(x∈R)为偶函数”的必要条件;正确;
(2)“直线l垂直平面α内无数条直线”则“直线l垂直平面α”不一定成立,故(2)错误;
(3)当x=0,y=1时,满足xy=0,但|x|+|y|=0不成立,故(3)错误;
(4)若p:?x∈R,x2+2x+2≤0,则¬p:?x∈R,x2+2x+2>0正确.
故错误的是(2)(3),
故答案为:(2)(3)

点评 本题主要考查命题的真假判断,涉及的知识点有充分条件和必要条件的判断,含有量词的命题的否定,综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.下列说法正确的个数是(  )
①长方形绕一条直线旋转一周所形成的几何体是圆柱; 
②过圆锥侧面上一点有无数条母线;
③圆锥的母线互相平行; 
④夹在圆柱的两个截面间的几何体还是一个圆柱.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.由9个互不相等的正数组成的矩阵$({\begin{array}{l}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}})$中,每行中的三个数成等差数列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比数列,下列四个判断正确的个数为4个.
①第2列a12,a22,a32必成等比数列       
②第1列a11,a21,a31不一定成等比数列
③a12+a32>a21+a23  
④若9个数之和等于9,则a22<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知在等差数列{an}中,S13=26,S10=50,则公差d为(  )
A.2B.-2C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,a,b,c分别为角A,B,C的对边,且cosB=$\frac{4}{5}$,b=2,△ABC的面积为3,则a+c=$2\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在回归分析中,通常利用分析残差来判断回归方程拟合数据的精确高低,利用R2来刻画回归的效果,以下关于分析残差和R2的描述不正确的是   (  )
A.通过分析残差有利于发现样本数据中的可疑数据
B.根据获取的样本数据计算${\sum_{i=1}^n{({{y_i}-\overline y})}^2}$,若${\sum_{i=1}^n{({{y_i}-\overline y})}^2}$越小,则模型的拟合效果越好
C.根据获取的样本数据计算$\sum_{i=1}^n{{{({{y_i}-\hat y})}^2}}$,若$\sum_{i=1}^n{{{({{y_i}-\hat y})}^2}}$越大,则模型的拟合效果越差
D.根据获取的样本数据计算R2,若R2=0.85,则表明解释变量解释了85%的预报变量变化

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知M是△ABC内的一点,且|AB||AC|=4,∠BAC=30°,若△MBC,△MCA,△MAB的面积分别为$\frac{1}{2}$、x、y,则$\frac{1}{x}$+$\frac{4}{y}$的最小值为(  )
A.20B.19C.18D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设数列{an}的前n项和为Sn,若Sn=2n-3,则数列{an}的通项公式为${a}_{n}=\left\{\begin{array}{l}{-1,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.复数z=$\frac{(1+i)^{2}}{1-i}$的共轭复数所对应的点位于复平面的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案