分析 利用导数的运算法则可得fn+4(x)=fn(x).n∈N,即可得出.
解答 解:∵f0(x)=sinx+cosx,
∴f1(x)=f0′(x)=cosx-sinx,
f2(x)=f1′(x)=-sinx-cosx,
f3(x)=-cosx+sinx,
f4(x)=sinx+cosx,
以此类推,可得出fn(x)=fn+4(x)
∴f19(x)=f4×4+3(x)=f3(x)=-cosx+sinx,
∴f19($\frac{π}{3}$)=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}-1}{2}$
故答案为:$\frac{\sqrt{3}-1}{2}$
点评 本题考查三角函数的导数、周期性、及观察归纳思想的运用,属于基础题.熟练掌握三角函数的求导法则,利用其中的函数周期性则解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 42 | B. | 30 | C. | 20 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com