精英家教网 > 高中数学 > 题目详情
6.已知四边形ABCD,对角线AC,BD互相垂直且内接于圆O,AB+BC+CD+DA=8,则点O到四边形各边距离之和为4.

分析 取特殊值,令四边形ABCD是边长为2的正方形,则点O是对角线AC、BD的交点,由此能求出点O到四边形各边距离之和.

解答 解:∵四边形ABCD,对角线AC,BD互相垂直且内接于圆O,AB+BC+CD+DA=8,
∴取特殊值,令四边形ABCD是边长为2的正方形,
则点O是对角线AC、BD的交点,
∴点O到四边形各边距离之和为4×1=4.
故答案为:4.

点评 本题考查圆心到内接四边形四边距离之和的求法,是基础题,解题时要认真审题,合理地选取特殊值能有效地简化运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.如图所示,求一个棱长为$\sqrt{2}$的正四面体的体积,可以看成一个棱长为1的正方体切去四个角后得到,类比这种分法,一个相对棱长都相等的四面体A-BCD,其三组棱长分别为AB=CD=$\sqrt{5}$,AD=BC=$\sqrt{13}$,AC=BD=$\sqrt{10}$,则此四面体的体积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=$\sqrt{x-4}$+$\sqrt{15-3x}$,下述判断中正确的是(  )
A.最大值是2,最小值是0B.最大值是3,最小值是2
C.最大值是3,最小值是1D.最大值是2,最小值是1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛物线y2=2px(p>0)上一点M(x0,8)到焦点的距离是10,则x0=(  )
A.1或8B.1或9C.2或8D.2或9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}(n∈N*)是递增的等比数列,且a1+a4=9,a2a3=8.
(1)求{an}的通项公式;
(2)已知bn=$\frac{2}{3}{log_2}{a_n}+1,{c_n}=\frac{1}{{{b_{n-1}}{b_n}}}$(n≥2),其中c1=3,令Sn=c1+c2+c3+…+cn,若Sn<$\frac{m-2007}{2}$对一切n∈N*恒成立,求满足条件的最小整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,侧棱SA丄底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中点.
(1)求证:AM∥平面SCD;
(2)求平面SCD与平面SAB所成的二面角的余弦值;
(3)设点N是直线CD上的动点,MN与平面SAB所成的角为θ,求sinθ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.定义在R上的函数f(x)满足f(x+5)=f(x),且$f(x)=\left\{\begin{array}{l}-{(x+3)^2},\;\;-2≤x<0\\ x,\;\;\;0≤x<3\end{array}\right.$,则f(1)+f(2)+f(3)+…+f(2013)=810.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,已知PA是⊙O相切,A为切点,PBC为割线,弦CD∥AP,AD、BC相交于E点,F为CE上一点,且DE2=EF•EC.
(Ⅰ)求证:A、P、D、F四点共圆;
(Ⅱ)若AE•ED=12,DE=EB=3,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.数列{an}的通项公式为${a_n}=cos\frac{nπ}{2},n∈{N^*}$,其前n项和为Sn,则S2016=(  )
A.1008B.-1008C.-1D.0

查看答案和解析>>

同步练习册答案