精英家教网 > 高中数学 > 题目详情
16.数列{an}的通项公式为${a_n}=cos\frac{nπ}{2},n∈{N^*}$,其前n项和为Sn,则S2016=(  )
A.1008B.-1008C.-1D.0

分析 由三角函数性质得数列{an}是以4为周期的周期数列,由此利用S2016=504(a1+a2+a3+a4),能求出结果.

解答 解:∵数列{an}的通项公式为${a_n}=cos\frac{nπ}{2},n∈{N^*}$,
∴${a}_{1}=cos\frac{π}{2}$=0,
a2=cosπ=-1,
${a}_{3}=cos\frac{3π}{2}$=0,
a4=cos2π=1,
数列{an}是以4为周期的周期数列,
∴S2016=504(a1+a2+a3+a4)=504(0-1+0+1)=0.
故选:D.

点评 本题考查数列的前2016项和的求法,是基础题,解题时要认真审题,解题的关键是推导出数列{an}是以4为周期的周期数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知四边形ABCD,对角线AC,BD互相垂直且内接于圆O,AB+BC+CD+DA=8,则点O到四边形各边距离之和为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.双曲线${x^2}-\frac{y^2}{3}=1$的实轴长是2,渐近线方程是y=$±\sqrt{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,PT切⊙O于点T,PA交⊙O于A,B两点,且与直径CT交于点D,CD=3,AD=4,BD=6,则PB=(  )
A.6B.8C.10D.14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,A,B,C为⊙O上的三个点,AD是∠BAC的平分线,交⊙O于点D,过B作⊙O的切线交AD的延长线于点E.
(Ⅰ)证明:BD平分∠EBC;
(Ⅱ)证明:AE•DC=AB•BE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-2.
(1)已知函数g(x)=f(x)+2(x+1)+alnx在区间(0,1)上单调,求实数a的取值范围;
(2)函数$h(x)=ln(1+{x^2})-\frac{1}{2}f(x)-k$有几个零点?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=xex-alnx,曲线y=f(x)在点(1,f(1))处的切线平行于x轴.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)证明:b≤e时,f(x)≥b(x2-2x+2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=BC=2,AC⊥BC,点S是侧棱AA1延长线上一点,EF是平面SBC与平面A1B1C1的交线.
(1)求证:EF⊥AC1
(2)求四棱锥A1-BCC1B1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<π),x∈R的最大值是2,最小正周期为$\frac{π}{2}$,其图象经过点M($\frac{π}{8}$,-1).
(Ⅰ)求f(x)的解析式;
(Ⅱ)若将函数f(x)的图象向右平移$\frac{π}{8}$个单位,再将所得图象上各点的纵坐标不变,横坐标伸长为原来的2倍,得到函数g(x)的图象,试用“五点法”画出函数g(x)在区间[-$\frac{π}{6}$,$\frac{5π}{6}$]上的简图;

查看答案和解析>>

同步练习册答案