| A. | 1008 | B. | -1008 | C. | -1 | D. | 0 |
分析 由三角函数性质得数列{an}是以4为周期的周期数列,由此利用S2016=504(a1+a2+a3+a4),能求出结果.
解答 解:∵数列{an}的通项公式为${a_n}=cos\frac{nπ}{2},n∈{N^*}$,
∴${a}_{1}=cos\frac{π}{2}$=0,
a2=cosπ=-1,
${a}_{3}=cos\frac{3π}{2}$=0,
a4=cos2π=1,
数列{an}是以4为周期的周期数列,
∴S2016=504(a1+a2+a3+a4)=504(0-1+0+1)=0.
故选:D.
点评 本题考查数列的前2016项和的求法,是基础题,解题时要认真审题,解题的关键是推导出数列{an}是以4为周期的周期数列.
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 8 | C. | 10 | D. | 14 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com