分析 (1)由面面垂直的性质得出BC⊥平面AA1C1C,根据BC∥平面A1B1C1得出BC∥EF,故而EF⊥平面AA1C1C,从而得出EF⊥AC1;
(2)取CC1中点O,连接A1O,则可证A1O⊥平面BB1C1C,底面BB1C1C是正方形,从而得出棱锥的体积.
解答
证明:(1)∵侧面AA1C1C⊥底面ABC,侧面AA1C1C∩底面ABC=AC,AC⊥BC,BC?平面ABC,
∴BC⊥平面AA1C1C,
∵BC∥B1C1,BC?平面A1B1C1,B1C1?平面A1B1C1,
∴BC∥平面A1B1C1,
又BC?平面SBC,平面SBC∩平面A1B1C1=EF,
∴BC∥EF,
∴EF⊥平面AA1C1C,又AC1?平面AA1C1C,
∴EF⊥AC1.
(2)由(1)得BC⊥平面AA1C1C,∵CC1?平面AA1C1C,
∴BC⊥CC1,又CC1=AA1=BC,BB1$\stackrel{∥}{=}$AA1,
∴四边形BB1C1C是正方形.
取CC1中点O,连接A1O,
∵A1C1=AC=A1C=CC1=2,∴△A1CC1是等边三角形,A1O=$\sqrt{3}$.
∴A1O⊥C1C,又A1O⊥BC,BC∩CC1=C,
∴A1O⊥平面BB1C1C.
∴V${\;}_{{A}_{1}-BC{C}_{1}{B}_{1}}$=$\frac{1}{3}{S}_{正方形BC{C}_{1}{B}_{1}}•{A}_{1}O$=$\frac{1}{3}×{2}^{2}×\sqrt{3}$=$\frac{4\sqrt{3}}{3}$.
点评 本题考查了线面垂直的判定与线面平行的性质,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1008 | B. | -1008 | C. | -1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com